1,261 research outputs found

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Forecasting seasonal hydrologic response in major river basins.

    Get PDF
    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts

    Using a stochastic weather generator to account for climate non-stationarity in extended streamflow forecasts

    Get PDF
    Reliable long-term streamflow forecast is essential in water resources management and plays a key role in reservoir management and hydropower generation. Properly framing the uncertainty is the key issue in providing a reliable long-term streamflow forecast, and probabilistic forecasts have been used to this effect. In a probabilistic approach, each observed historical data is taken as a possible realization of the future. Non stationarity of hydrometeorological variables, either due to the climate internal variability or anthropogenic change, is another important problem for long-term streamflow forecasts as it is becoming increasingly clearer that past historical data may not adequately represent the current climate. Therefore, there is a need to develop flexible approaches taking into account non-stationarity for long-term streamflow forecasts. Resampling past historical time series is the main approach used for probabilistic long term streamflow forecasts. However, non-stationarity is a key issue of resampling approaches. One possible approach is to make use of a stochastic weather generator coupled to a hydrological model to generate long-term probabilistic streamflow forecasts. Weather generators can easily be modified to account for climatic trends and therefore have the potential to take non-stationarity into account. However, before weather generators can be modified to account for climate non-stationarity, it is first necessary to evaluate whether the modeling chain consisting of a stochastic weather generator and a hydrological model can generate probabilistic streamflow forecasts with a performance similar to that of more traditional resampling approaches. The first objective of this study is therefore, to compare the performance of a stochastic weather generator against that of resampling historical meteorological time series in order to produce ensemble streamflow forecasts. Results indicate that while there are differences between both methods, they nevertheless largely both perform similarly, thus showing that weather generators can be used as substitutes to resampling the historical past. Based on these results, two approaches for taking non-stationarity into account have been proposed. Both approaches are based on a climate-based perturbation of the stochastic weather generator parameters. The first approach explored a simple perturbation method in which the entire length of the historical record is used to quantify internal variability, while a subset of recent years is used to characterize mean climatic values for precipitation, minimum and maximum temperatures. Results show that the approach systematically improves long-term streamflow forecasts accuracy, and that results are dependent on the time window used to estimate current mean climatic estimates. The second approach conditioned the parameters of a stochastic weather generator on largescale climate indices. In this approach, the most important climate indices are identified by looking at yearly correlations between a set of 40 indices and precipitation and temperature. A linear model is then constructed to identify precipitation and temperature anomalies which are then used to induce perturbations in the stochastic weather generator. Five different time windows are defined to determine the optimal linear model. Results show that temperatures are significantly correlated with large-scale climate indices, whereas precipitation is only weakly related to the same indices. The length of the time window has a considerable impact on the prediction ability of the linear models. The precipitation models based on short-duration time windows performed better than those based on longer windows, while the reverse was found for the temperature models. Results show that the proposed method improves long-term streamflow forecasting, particularly around the spring flood

    Towards Improving Drought Forecasts Across Different Spatial and Temporal Scales

    Get PDF
    Recent water scarcities across the southwestern U.S. with severe effects on the living environment inspire the development of new methodologies to achieve reliable drought forecasting in seasonal scale. Reliable forecast of hydrologic variables, in general, is a preliminary requirement for appropriate planning of water resources and developing effective allocation policies. This study aims at developing new techniques with specific probabilistic features to improve the reliability of hydrologic forecasts, particularly the drought forecasts. The drought status in the future is determined by certain hydrologic variables that are basically estimated by the hydrologic models with rather simple to complex structures. Since the predictions of hydrologic models are prone to different sources of uncertainties, there have been several techniques examined during past several years which generally attempt to combine the predictions of single (multiple) hydrologic models to generate an ensemble of hydrologic forecasts addressing the inherent uncertainties. However, the imperfect structure of hydrologic models usually lead to systematic bias of hydrologic predictions that further appears in the forecast ensembles. This study proposes a post-processing method that is applied to the raw forecast of hydrologic variables and can develop the entire distribution of forecast around the initial single-value prediction. To establish the probability density function (PDF) of the forecast, a group of multivariate distribution functions, the so-called copula functions, are incorporated in the post-processing procedure. The performance of the new post-processing technique is tested on 2500 hypothetical case studies and the streamflow forecast of Sprague River Basin in southern Oregon. Verified by some deterministic and probabilistic verification measures, the method of Quantile Mapping as a traditional post-processing technique cannot generate the qualified forecasts as comparing with the copula-based method. The post-processing technique is then expanded to exclusively study the drought forecasts across the different spatial and temporal scales. In the proposed drought forecasting model, the drought status in the future is evaluated based on the drought status of the past seasons while the correlations between the drought variables of consecutive seasons are preserved by copula functions. The main benefit of the new forecast model is its probabilistic features in analyzing future droughts. It develops conditional probability of drought status in the forecast season and generates the PDF and cumulative distribution function (CDF) of future droughts given the past status. The conditional PDF can return the highest probable drought in the future along with an assessment of the uncertainty around that value. Using the conditional CDF for forecast season, the model can generate the maps of drought status across the basin with particular chance of occurrence in the future. In a different analysis of the conditional CDF developed for the forecast season, the chance of a particular drought in the forecast period can be approximated given the drought status of earlier seasons. The forecast methodology developed in this study shows promising results in hydrologic forecasts and its particular probabilistic features are inspiring for future studies

    Characterizing uncertainty of the hydrologic impacts of climate change

    Get PDF
    The high climate sensitivity of hydrologic systems, the importance of those systems to society, and the imprecise nature of future climate projections all motivate interest in characterizing uncertainty in the hydrologic impacts of climate change. We discuss recent research that exposes important sources of uncertainty that are commonly neglected by the water management community, especially, uncertainties associated with internal climate system variability, and hydrologic modeling. We also discuss research exposing several issues with widely used climate downscaling methods. We propose that progress can be made following parallel paths: first, by explicitly characterizing the uncertainties throughout the modeling process (rather than using an ad hoc “ensemble of opportunity”) and second, by reducing uncertainties through developing criteria for excluding poor methods/models, as well as with targeted research to improve modeling capabilities. We argue that such research to reveal, reduce, and represent uncertainties is essential to establish a defensible range of quantitative hydrologic storylines of climate change impacts

    Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region

    Get PDF
    The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and results of the PRECIS (Providing REgional Climate for Impact Studies) RCM driven by the outputs of reanalysis ERA 40 data and HadAM3P general circulation model (GCM) results are used as input in the hydrological model. The objective is to investigate the effect of precipitation and temperature simulated with the PRECIS RCM nested in these two data sets on discharge simulated with the HBV model for three river basins in the Hindukush-Karakorum-Himalaya (HKH) region. Six HBV model experiments are designed: HBV-Met, HBV-ERA and HBV-Had, HBV-MetCRU-corrected, HBV-ERABenchmark and HBV-HadBenchmark where HBV is driven by meteorological stations data, data from PRECIS nested in ERA-40 and HadAM3P, meteorological stations CRU corrected data, ERA-40 reanalysis and HadAM3P GCM data, respectively. Present day PRECIS simulations possess strong capacity to simulate spatial patterns of present day climate characteristics. However, also some quantitative biases exist in the HKH region, where PRECIS RCM simulations underestimate temperature and overestimate precipitation with respect to CRU observations. The calibration and validation results of the HBV model experiments show that the performance of HBV-Met is better than the HBV models driven by other data sources. However, using input data series from sources different from the data used in the model calibration shows that HBV-Had is more efficient than other models and HBV-Met has the least absolute relative error with respect to all other models. The uncertainties are higher in least efficient models (i.e. HBV-MetCRU-corrected and HBV-ERABenchmark) where the model parameters are also unrealistic. In terms of both robustness and uncertainty ranges the HBV models calibrated with PRECIS output performed better than other calibrated models except for HBV-Met which has shown a higher robustness. This suggests that in data sparse regions such as the HKH region data from regional climate models may be used as input in hydrological models for climate scenarios studies

    The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    Get PDF
    The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate projections from 16 global climate models (GCMs) were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although prior studies and associated media coverage have focused heavily on the likelihood of a drier future for the Colorado River Basin, approximately 25 to 35% of the ensemble of runs, by 2099 and 2039, respectively, result in no change or increases in streamflow. The broad range of projected impacts is primarily the result of uncertainty in projections of future precipitation, and a relatively small part of the variability of precipitation across the projections can be attributed to the effect of emissions pathways. The simulated evolution of future temperature is strongly influenced by emissions, but temperature has a smaller influence than precipitation on flow. Period change statistics (i.e., the change in flow from one 30-yr period to another) vary as much within a model ensemble as between models and emissions pathways. Even by the end of the current century, the variability across the projections is much greater than changes in the ensemble mean. The relatively large ensemble analysis described herein provides perspective on earlier studies that have used fewer scenarios, and suggests that impact analyses relying on one or a few climate scenarios are unacceptably influenced by the choice of projections

    Quantifying Uncertainties in the Modelled Estimates of Extreme Precipitation Events at the Upper Thames River Basin

    Get PDF
    Assessment of climate change impact on hydrology at watershed scale incorporates downscaling of global scale climatic variables into local scale hydrologic variables and computations of risk of hydrologic extremes in future for water resources planning and management. Atmosphere-Ocean General Circulation (AOGCM) models are designed to simulate time series of future climate responses accounting for enthropogenically induced green house gas emissions. The climatological inputs obtained from several AOGCMs suffer the limitations due to incomplete knowledge arising from the inherent physical, chemical processes and the parameterization of the model structure. This study explores the methods available for quantifying uncertainties from the AOGCM outputs by considering fixed weights from different climate model means for the overall data lengths and provides an extensive investigation of the variable weight nonparametric kernel estimator based on the choice of bandwidths for investigating the severity of extreme precipitation events over the next century. The results of this study indicate that the variable width method is better equipped to provide more useful information of the uncertainties associated with different AOGCM scenarios. This study further indicates an increase of probabilities for higher intensities and frequencies of events. The applied methodology is flexible and can be adapted to any uncertainty estimation studies with unknown densities.https://ir.lib.uwo.ca/wrrr/1032/thumbnail.jp
    corecore