2,534 research outputs found

    A More Reliable Step Counter using Built-in Accelerometer in Smartphone

    Get PDF
    Step counter, being an active area of human daily physical activity, is an essential role in human activity determination research. As the current smartphones come with many different sensors and powerful processing capabilities, the step counting using built-in sensors in a smartphone is increasingly becoming a vital factor among many researchers. However, the step counting with a smartphone has still challenging due to many different walking behaviors and mobile phone positions. In this study, we introduce a more reliable step counter’s technique using Accelerometer sensor in a smart phone. The objective of this study is to get the accurate steps of three different walking activities in four different mobile positions. In order to achieve this, a new reliable technique based on peak is attracting considerable in our work using average acceleration. The experimental result shows 99.02% as an overall step counting performance that the proposed method reliably detects the steps under varying walking speed in different devices modes. This result is encouraging to facilitate among of the complex walking activities using built-in sensors in smartphone

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    Multi sensor system for pedestrian tracking and activity recognition in indoor environments

    Get PDF
    The widespread use of mobile devices and the rise of Global Navigation Satellite Systems (GNSS) have allowed mobile tracking applications to become very popular and valuable in outdoor environments. However, tracking pedestrians in indoor environments with Global Positioning System (GPS)-based schemes is still very challenging. Along with indoor tracking, the ability to recognize pedestrian behavior and activities can lead to considerable growth in location-based applications including pervasive healthcare, leisure and guide services (such as, hospitals, museums, airports, etc.), and emergency services, among the most important ones. This paper presents a system for pedestrian tracking and activity recognition in indoor environments using exclusively common off-the-shelf sensors embedded in smartphones (accelerometer, gyroscope, magnetometer and barometer). The proposed system combines the knowledge found in biomechanical patterns of the human body while accomplishing basic activities, such as walking or climbing stairs up and down, along with identifiable signatures that certain indoor locations (such as turns or elevators) introduce on sensing data. The system was implemented and tested on Android-based mobile phones. The system detects and counts steps with an accuracy of 97% and 96:67% in flat floor and stairs, respectively; detects user changes of direction and altitude with 98:88% and 96:66% accuracy, respectively; and recognizes the proposed human activities with a 95% accuracy. All modules combined lead to a total tracking accuracy of 91:06% in common human motion indoor displacement

    CaloriNet: From silhouettes to calorie estimation in private environments

    Get PDF
    We propose a novel deep fusion architecture, CaloriNet, for the online estimation of energy expenditure for free living monitoring in private environments, where RGB data is discarded and replaced by silhouettes. Our fused convolutional neural network architecture is trainable end-to-end, to estimate calorie expenditure, using temporal foreground silhouettes alongside accelerometer data. The network is trained and cross-validated on a publicly available dataset, SPHERE_RGBD + Inertial_calorie. Results show state-of-the-art minimum error on the estimation of energy expenditure (calories per minute), outperforming alternative, standard and single-modal techniques.Comment: 11 pages, 7 figure

    Indoor tracking from multidimensional sensor data

    Get PDF
    Tracking the position of people or vehicles in large indoor settings with high accuracy is still a challenge despite the significant progress observed in indoor positioning technology in the last decade. To date, there is not a clearly dominant indoor positioning solution for general use, and challenges related to seamless indoor-outdoor positioning, reliable floor estimation and indoor maps are still needing more research. In this context, the IPIN 2016 conference is promoting a competition to evaluate a set of competing indoor positioning solutions in a realistic scenario. This paper describes the proposal of the UMINHO team and some of the obtained results.This work has been supported by COMPETE: POCI-01- 0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013

    Interactive virtual indoor navigation system using visual recognition and pedestrian dead reckoning techniques

    Get PDF
    Finding a destination in an unfamiliar indoor environment requires cumbersome effort to refer to a physical floor plan or directory to locate the intended destination. With the advancements of mobile technologies, a navigational system using mobile computing devices such as mobile phone or tablet could aid users in locating the desired destination with ease. This paper presented an interactive virtual indoor navigation system which is developed for Sunway University campus. In order to provide an interactive and context-sensitive navigation platform, a hybrid solution has been proposed by blending the sensor capabilities on the mobile devices to work in an indoor environment. These sensors include utilizing the built-in accelerometer, compass and camera capabilities to create an interactive content of indoor navigation system using visual recognition and pedestrian dead reckoning for Augmented Reality (AR). Furthermore, user satisfaction and feedback survey have been collected for further improvement the proposed solution
    corecore