1,209 research outputs found

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    Material and energy flows of the iron and steel industry: status quo, challenges and perspectives

    Get PDF
    Integrated analysis and optimization of material and energy flows in the iron and steel industry have drawn considerable interest from steelmakers, energy engineers, policymakers, financial firms, and academic researchers. Numerous publications in this area have identified their great potential to bring significant benefits and innovation. Although much technical work has been done to analyze and optimize material and energy flows, there is a lack of overview of material and energy flows of the iron and steel industry. To fill this gap, this work first provides an overview of different steel production routes. Next, the modelling, scheduling and interrelation regarding material and energy flows in the iron and steel industry are presented by thoroughly reviewing the existing literature. This study selects eighty publications on the material and energy flows of steelworks, from which a map of the potential of integrating material and energy flows for iron and steel sites is constructed. The paper discusses the challenges to be overcome and the future directions of material and energy flow research in the iron and steel industry, including the fundamental understandings of flow mechanisms, the dynamic material and energy flow scheduling and optimization, the synergy between material and energy flows, flexible production processes and flexible energy systems, smart steel manufacturing and smart energy systems, and revolutionary steelmaking routes and technologies

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Data analytics for stochastic control and prognostics in cyber-physical systems

    Get PDF
    In this dissertation, several novel cyber fault diagnosis and prognosis and defense methodologies for cyber-physical systems have been proposed. First, a novel routing scheme for wireless mesh network is proposed. An effective capacity estimation for P2P and E2E path is designed to guarantee the vital transmission safety. This scheme can ensure a high quality of service (QoS) under imperfect network condition, even cyber attacks. Then, the imperfection, uncertainties, and dynamics in the cyberspace are considered both in system model and controller design. A PDF identifier is proposed to capture the time-varying delays and its distribution. With the modification of traditional stochastic optimal control using PDF of delays, the assumption of full knowledge of network imperfection in priori is relaxed. This proposed controller is considered a novel resilience control strategy for cyber fault diagnosis and prognosis. After that, we turn to the development of a general framework for cyber fault diagnosis and prognosis schemes for CPSs wherein the cyberspace performance affect the physical system and vice versa. A novel cyber fault diagnosis scheme is proposed. It is capable of detecting cyber fault by monitoring the probability of delays. Also, the isolation of cyber and physical system fault is achieved with cooperating with the traditional observer based physical system fault detection. Next, a novel cyber fault prognosis scheme, which can detect and estimate cyber fault and its negative effects on system performance ahead of time, is proposed. Moreover, soft and hard cyber faults are isolated depending on whether potential threats on system stability is predicted. Finally, one-class SVM is employed to classify healthy and erroneous delays. Then, another cyber fault prognosis based on OCSVM is proposed --Abstract, page iv

    Multi-agent Adaptive Architecture for Flexible Distributed Real-time Systems

    Get PDF
    Recent critical embedded systems become more and more complex and usually react to their environment that requires to amend their behaviors by applying run-time reconfiguration scenarios. A system is defined in this paper as a set of networked devices, where each of which has its own operating system, a processor to execute related periodic software tasks, and a local battery. A reconfiguration is any operation allowing the addition-removal-update of tasks to adapt the device and the whole system to its environment. It may be a reaction to a fault or even optimization of the system functional behavior. Nevertheless, such scenario can cause the violation of real-time or energy constraints, which is considered as a critical run-time problem. We propose a multi-agent adaptive architecture to handle dynamic reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under energy constraints. The proposed architecture integrates a centralized scheduler agent (ScA) which is the common decision making element for the scheduling problem. It is able to carry out the required run-time solutions based on operation research techniques and mathematical tools for the system's feasibility. This architecture assigns also a reconfiguration agent (RA p ) to each device p to control and handle the local reconfiguration scenarios under the instructions of ScA. A token-based protocol is defined in this case for the coordination between the different distributed agents in order to guarantee the whole system's feasibility under energy constraints.info:eu-repo/semantics/publishedVersio

    Sense and Respond

    Get PDF
    Over the past century, the manufacturing industry has undergone a number of paradigm shifts: from the Ford assembly line (1900s) and its focus on efficiency to the Toyota production system (1960s) and its focus on effectiveness and JIDOKA; from flexible manufacturing (1980s) to reconfigurable manufacturing (1990s) (both following the trend of mass customization); and from agent-based manufacturing (2000s) to cloud manufacturing (2010s) (both deploying the value stream complexity into the material and information flow, respectively). The next natural evolutionary step is to provide value by creating industrial cyber-physical assets with human-like intelligence. This will only be possible by further integrating strategic smart sensor technology into the manufacturing cyber-physical value creating processes in which industrial equipment is monitored and controlled for analyzing compression, temperature, moisture, vibrations, and performance. For instance, in the new wave of the ‘Industrial Internet of Things’ (IIoT), smart sensors will enable the development of new applications by interconnecting software, machines, and humans throughout the manufacturing process, thus enabling suppliers and manufacturers to rapidly respond to changing standards. This reprint of “Sense and Respond” aims to cover recent developments in the field of industrial applications, especially smart sensor technologies that increase the productivity, quality, reliability, and safety of industrial cyber-physical value-creating processes

    Artificial Intelligence in Manufacturing

    Get PDF
    This open access book presents a rich set of innovative solutions for artificial intelligence (AI) in manufacturing. The various chapters of the book provide a broad coverage of AI systems for state of the art flexible production lines including both cyber-physical production systems (Industry 4.0) and emerging trustworthy and human-centered manufacturing systems (Industry 5.0). From a technology perspective, the book addresses a wide range of AI paradigms such as deep learning, reinforcement learning, active learning, agent-based systems, explainable AI, industrial robots, and AI-based digital twins. Emphasis is put on system architectures and technologies that foster human-AI collaboration based on trusted interactions between workers and AI systems. From a manufacturing applications perspective, the book illustrates the deployment of these AI paradigms in a variety of use cases spanning production planning, quality control, anomaly detection, metrology, workers’ training, supply chain management, as well as various production optimization scenarios. This is an open access book

    Variant-oriented Planning Models for Parts/Products Grouping, Sequencing and Operations

    Get PDF
    This research aims at developing novel methods for utilizing the commonality between part/product variants to make modern manufacturing systems more flexible, adaptable, and agile for dealing with less volume per variant and minimizing total changes in the setup between variants. Four models are developed for use in four important domains of manufacturing systems: production sequencing, product family formation, production flow, and products operations sequences retrieval. In all these domains, capitalizing on commonality between the part/product variants has a pivotal role. For production sequencing; a new policy based on setup similarity between product variants is proposed and its results are compared with a developed mathematical model in a permutation flow shop. The results show the proposed algorithm is capable of finding solutions in less than 0.02 seconds with an average error of 1.2%. For product family formation; a novel operation flow based similarity coefficient is developed for variants having networked structures and integrated with two other similarity coefficients, operation and volume similarity, to provide a more comprehensive similarity coefficient. Grouping variants based on the proposed integrated similarity coefficient improves changeover time and utilization of the system. A sequencing method, as a secondary application of this approach, is also developed. For production flow; a new mixed integer programing (MIP) model is developed to assign operations of a family of product variants to candidate machines and also to select the best place for each machine among the candidate locations. The final sequence of performing operations for each variant having networked structures is also determined. The objective is to minimize the total backtracking distance leading to an improvement in total throughput of the system (7.79% in the case study of three engine blocks). For operations sequences retrieval; two mathematical models and an algorithm are developed to construct a master operation sequence from the information of the existing variants belonging to a family of parts/products. This master operation sequence is used to develop the operation sequences for new variants which are sufficiently similar to existing variants. Using the proposed algorithm decreases time of developing the operations sequences of new variants to the seconds
    • 

    corecore