326,587 research outputs found
A General Form of Attribute Exploration
We present a general form of attribute exploration, a knowledge completion algorithm from formal concept analysis. The aim of this generalization is to extend the applicability of attribute exploration by a general description. Additionally, this may also allow for viewing different existing variants of attribute exploration as instances of a general form, as for example exploration on partial contexts
The psychological processes of constructing a mental model when learning by being told, from examples and by exploration
Towards Collaborative Conceptual Exploration
In domains with high knowledge distribution a natural objective is to create
principle foundations for collaborative interactive learning environments. We
present a first mathematical characterization of a collaborative learning
group, a consortium, based on closure systems of attribute sets and the
well-known attribute exploration algorithm from formal concept analysis. To
this end, we introduce (weak) local experts for subdomains of a given knowledge
domain. These entities are able to refute and potentially accept a given
(implicational) query for some closure system that is a restriction of the
whole domain. On this we build up a consortial expert and show first insights
about the ability of such an expert to answer queries. Furthermore, we depict
techniques on how to cope with falsely accepted implications and on combining
counterexamples. Using notions from combinatorial design theory we further
expand those insights as far as providing first results on the decidability
problem if a given consortium is able to explore some target domain.
Applications in conceptual knowledge acquisition as well as in collaborative
interactive ontology learning are at hand.Comment: 15 pages, 2 figure
Attribute Exploration of Discrete Temporal Transitions
Discrete temporal transitions occur in a variety of domains, but this work is
mainly motivated by applications in molecular biology: explaining and analyzing
observed transcriptome and proteome time series by literature and database
knowledge. The starting point of a formal concept analysis model is presented.
The objects of a formal context are states of the interesting entities, and the
attributes are the variable properties defining the current state (e.g.
observed presence or absence of proteins). Temporal transitions assign a
relation to the objects, defined by deterministic or non-deterministic
transition rules between sets of pre- and postconditions. This relation can be
generalized to its transitive closure, i.e. states are related if one results
from the other by a transition sequence of arbitrary length. The focus of the
work is the adaptation of the attribute exploration algorithm to such a
relational context, so that questions concerning temporal dependencies can be
asked during the exploration process and be answered from the computed stem
base. Results are given for the abstract example of a game and a small gene
regulatory network relevant to a biomedical question.Comment: Only the email address and reference have been replace
- …