2,114 research outputs found

    A Derivation of π(n) Based on a Stability Analysis of the Riemann-Zeta Function

    Get PDF
    The prime-number counting function π(n), which is significant in the prime number theorem, is derived by analyzing the region of convergence of the real-part of the Riemann- Zeta function using the unilateral z-transform. In order to satisfy the stability criteria of the z-transform, it is found that the real part of the Riemann-Zeta function must converge to the prime-counting function

    Periodic orbit spectrum in terms of Ruelle--Pollicott resonances

    Full text link
    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g. a trajectory ``p'' returns to its initial conditions after some fixed time tau_p. Our aim is to investigate the spectrum tau_1, tau_2, ... of periods of the periodic orbits. An explicit formula for the density rho(tau) = sum_p delta (tau - tau_p) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle--Pollicott resonances). For large periods, corrections to the well--known exponential growth of the smooth part of the density are obtained. An alternative formula for rho(tau) in terms of the zeros and poles of the Ruelle zeta function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random matrix theory and discrete maps are also considered. In particular, a random matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards

    Coupling techniques for nonlinear hyperbolic equations. III. The well-balanced approximation of thick interfaces

    Full text link
    We continue our analysis of the coupling between nonlinear hyperbolic problems across possibly resonant interfaces. In the first two parts of this series, we introduced a new framework for coupling problems which is based on the so-called thin interface model and uses an augmented formulation and an additional unknown for the interface location; this framework has the advantage of avoiding any explicit modeling of the interface structure. In the present paper, we pursue our investigation of the augmented formulation and we introduce a new coupling framework which is now based on the so-called thick interface model. For scalar nonlinear hyperbolic equations in one space variable, we observe that the Cauchy problem is well-posed. Then, our main achievement in the present paper is the design of a new well-balanced finite volume scheme which is adapted to the thick interface model, together with a proof of its convergence toward the unique entropy solution (for a broad class of nonlinear hyperbolic equations). Due to the presence of a possibly resonant interface, the standard technique based on a total variation estimate does not apply, and DiPerna's uniqueness theorem must be used. Following a method proposed by Coquel and LeFloch, our proof relies on discrete entropy inequalities for the coupling problem and an estimate of the discrete entropy dissipation in the proposed scheme.Comment: 21 page

    Spectral spacing correlations for chaotic and disordered systems

    Full text link
    New aspects of spectral fluctuations of (quantum) chaotic and diffusive systems are considered, namely autocorrelations of the spacing between consecutive levels or spacing autocovariances. They can be viewed as a discretized two point correlation function. Their behavior results from two different contributions. One corresponds to (universal) random matrix eigenvalue fluctuations, the other to diffusive or chaotic characteristics of the corresponding classical motion. A closed formula expressing spacing autocovariances in terms of classical dynamical zeta functions, including the Perron-Frobenius operator, is derived. It leads to a simple interpretation in terms of classical resonances. The theory is applied to zeros of the Riemann zeta function. A striking correspondence between the associated classical dynamical zeta functions and the Riemann zeta itself is found. This induces a resurgence phenomenon where the lowest Riemann zeros appear replicated an infinite number of times as resonances and sub-resonances in the spacing autocovariances. The theoretical results are confirmed by existing ``data''. The present work further extends the already well known semiclassical interpretation of properties of Riemann zeros.Comment: 28 pages, 6 figures, 1 table, To appear in the Gutzwiller Festschrift, a special Issue of Foundations of Physic

    O(N) Sigma Model as a Three Dimensional Conformal Field Theory

    Get PDF
    We study a three dimensional conformal field theory in terms of its partition function on arbitrary curved spaces. The large NN limit of the nonlinear sigma model at the non-trivial fixed point is shown to be an example of a conformal field theory, using zeta--function regularization. We compute the critical properties of this model in various spaces of constant curvature (R2×S1R^2 \times S^1, S1×S1×RS^1\times S^1 \times R, S2×RS^2\times R, H2×RH^2\times R, S1×S1×S1S^1 \times S^1 \times S^1 and S2×S1S^2 \times S^1) and we argue that what distinguishes the different cases is not the Riemann curvature but the conformal class of the metric. In the case H2×RH^2\times R (constant negative curvature), the O(N)O(N) symmetry is spontaneously broken at the critical point. In the case S2×RS^2\times R (constant positive curvature) we find that the free energy vanishes, consistent with conformal equivalence of this manifold to R3R^3, although the correlation length is finite. In the zero curvature cases, the correlation length is finite due to finite size effects. These results describe two dimensional quantum phase transitions or three dimensional classical ones.Comment: 35 pages, TeX, (Revised version, to appear in Nucl. Phys. B--paper shortened, a discussion added and other minor corrections

    Physics of the Riemann Hypothesis

    Full text link
    Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics' most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.Comment: 27 pages, 9 figure

    Quantum thermodynamic fluctuations of a chaotic Fermi-gas model

    Full text link
    We investigate the thermodynamics of a Fermi gas whose single-particle energy levels are given by the complex zeros of the Riemann zeta function. This is a model for a gas, and in particular for an atomic nucleus, with an underlying fully chaotic classical dynamics. The probability distributions of the quantum fluctuations of the grand potential and entropy of the gas are computed as a function of temperature and compared, with good agreement, with general predictions obtained from random matrix theory and periodic orbit theory (based on prime numbers). In each case the universal and non--universal regimes are identified.Comment: 23 pages, 4 figures, 1 tabl

    Chaotic maps and flows: Exact Riemann-Siegel lookalike for spectral fluctuations

    Full text link
    To treat the spectral statistics of quantum maps and flows that are fully chaotic classically, we use the rigorous Riemann-Siegel lookalike available for the spectral determinant of unitary time evolution operators FF. Concentrating on dynamics without time reversal invariance we get the exact two-point correlator of the spectral density for finite dimension NN of the matrix representative of FF, as phenomenologically given by random matrix theory. In the limit N→∞N\to\infty the correlator of the Gaussian unitary ensemble is recovered. Previously conjectured cancellations of contributions of pseudo-orbits with periods beyond half the Heisenberg time are shown to be implied by the Riemann-Siegel lookalike
    • …
    corecore