228,352 research outputs found
Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication
Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates
Epitaxial growth of 6H silicon carbide in the temperature range 1320 C to 1390 C
High-quality epitaxial layers of 6H SiC have been grown on 6H SiC substrates with the grown direction perpendicular to the crystal c-axis. The growth was by chemical vapor deposition from methyltrichlorosilane (CH3SiCl3) in hydrogen at temperatures in the range of 1320 to 1390 C. Epitaxial layers up to 80 microns thick were grown at rates of 0.4 microns/min. Attempts at growth on the (0001) plane of 6H SiC substrates under similar conditions resulted in polycrystalline cubic SiC layers. Optical and X-ray diffraction techniques were used to characterize the grown layers
Band structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC
The band structures of 6H and 4H SiC calculated by means of the FP-LMTO
method are used to determine the effective mass tensors for their
conduction-band minima. The results are shown to be consistent with recent
optically detected cyclotron resonance measurements and predict an unusual band
filling dependence for 6H-SiC.Comment: 5 pages including 4 postscript figures incorporated with epsfig figs.
available as part 2: sicfig.uu self-extracting file to appear in Phys. Rev.
B: Aug. 15 (Rapid Communications
Silicon carbide semiconductor technology for high temperature and radiation environments
Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response
Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers
A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer
Development of porous coatings enriched with magnesium and zinc obtained by DC plasma electrolytic oxidation
Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine's biocompatible sensors' housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO3)(2)center dot 6H(2)O and/or zinc nitrate hexahydrate Zn(NO3)(2)center dot 6H(2)O in concentrated phosphoric acid H3PO4 (85% w/w). Complementary techniques are used for coatings' surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO3)(2)center dot 6H(2)O and 250 g/L Zn(NO3)(2)center dot 6H(2)O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO43-, or HPO42-, or H2PO4-, or P2O74-).Web of Science97art. no. 33
Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry
We present numerical studies of one- and two-photon excited states ordering
in a number of polycyclic aromatic hydrocarbon molecules: coronene,
hexa-peri-hexabenzocoronene and circumcoronene, all possessing point
group symmetry versus ovalene with symmetry, within the
Pariser-Parr-Pople model of interacting -electrons. The calculated
energies of the two-photon states as well as their relative two-photon
absorption cross-sections within the interacting model are qualitatively
different from single-particle descriptions. More remarkably, a peculiar role
of molecular geometry is found. The consequence of electron correlations is far
stronger for ovalene, where the lowest spin-singlet two-photon state is a
quantum superposition of pairs of lowest spin triplet states, as in the linear
polyenes. The same is not true for group hydrocarbons. Our work
indicates significant covalent character, in valence bond language, of the
ground state, the lowest spin triplet state and a few of the lowest two-photon
states in ovalene but not in those with symmetry.Comment: 11 pages, 3 figures, 3 table
Magnetodielectric coupling in a Ru-based 6H-perovskite, Ba3NdRu2O9
A large spin-orbit coupling is a way to control strong magnetodielectric (MD)
coupling in a higher d-orbital materials. However reports are rare on such
compounds due to often leaky conductive behavior. Here, we demonstrate MD
coupling in a Ru-based 6H-perovskite system, Ba3NdRu2O9. The rare-earth ion in
a 6H-perovskite makes the system insulating enough to carry out MD
investigation. The compound is ferromagnetically ordered below 24 K (TC),
followed by another magnetic feature at T~ 17 K (T2). The dielectric constant
clearly traces the magnetic ordering, manifesting a peak at the onset of TC,
which is suppressed by the application of an external magnetic field (H). The
results indicate the presence of MD coupling in this compound, which is further
confirmed by the H-dependence of the dielectric constant. Interestingly, a
cross-over of the sign of MD coupling is observed at T ~ T2. We conclude that
two different mechanism controls the MD coupling which yields positive and
negative coupling, respectively. Both mechanisms are competing as a function of
temperature and magnetic field. This brings us a step closer to design and
control the magnetodielectric effect in 6H-perovskites containing higher
d-orbital elements
Thermal conductance of graphene and dimerite
We investigate the phonon thermal conductance of graphene regarding the
graphene sheet as the large-width limit of graphene strips in the ballistic
limit. We find that the thermal conductance depends weakly on the direction
angle of the thermal flux periodically with period . It is
further shown that the nature of this directional dependence is the directional
dependence of group velocities of the phonon modes in the graphene, originating
from the symmetry in the honeycomb structure. By breaking the
symmetry in graphene, we see more obvious anisotropic effect in the thermal
conductance as demonstrated by dimerite.Comment: enlarged version, in PR
- …