5,691 research outputs found
Human Motion Trajectory Prediction: A Survey
With growing numbers of intelligent autonomous systems in human environments,
the ability of such systems to perceive, understand and anticipate human
behavior becomes increasingly important. Specifically, predicting future
positions of dynamic agents and planning considering such predictions are key
tasks for self-driving vehicles, service robots and advanced surveillance
systems. This paper provides a survey of human motion trajectory prediction. We
review, analyze and structure a large selection of work from different
communities and propose a taxonomy that categorizes existing methods based on
the motion modeling approach and level of contextual information used. We
provide an overview of the existing datasets and performance metrics. We
discuss limitations of the state of the art and outline directions for further
research.Comment: Submitted to the International Journal of Robotics Research (IJRR),
37 page
Real-Time Inverse Dynamic Deep Neural Network Tracking Control for Delta Robot Based on a COVID-19 Optimization
This paper presents a new technique to design an inverse dynamic model for a delta robot experimental setup to obtain an accurate trajectory. The input/output data were collected using an NI DAQ card where the input is the random angles profile for the three-axis and the output is the corresponding measured torques. The inverse dynamic model was developed based on the deep neural network (NN) and the new COVID-19 optimization to find the optimal initial weights and bias values of the NN model. Due to the system uncertainty and nonlinearity, the inverse dynamic model is not enough to track accurately the preselected profile. So, the PD compensator is used to absorb the error deviation of the end effector. The experimental results show that the proposed inverse dynamic deep NN with PD compensator achieves good performance and high tracking accuracy. The suggested control was examined using two different methods. The spiral path is the first, with a root mean square error of 0.00258 m, while the parabola path is the second, with a root mean square error of 0.00152 m
The Implementation of Driver Model Based on the Attention Transfer Process
To describe the characteristics of driver’s attention changing with driving environment, establish the relation between driver model parameter and driver’s attention, seek for mapping relation between driver’s behavior and vehicle’s running status data, and provide individualized driver simulation model for unmanned car controller or for driver’s mental state inversion based on vehicle’s running status data, the paper established a driver model based on driver’s attention and deduced the relation between attention intensity and continuous driving time according to the process of driver’s attention change from concentration to distraction and the distribution characteristics of their durations. The relationship between driver’s mental state and manual closed-loop driving model parameters is established according to the transfer rule of attention in the driving course, and it is applied to driver model based on dynamical regulation neural network. Finally the paper researched dynamics evolution characteristics of vehicle running caused by fatigue driving in the environment of double lane change and large curvature, with test result verifying the effectiveness and accuracy of the driver model based on the attention transfer process
Embodying functionally relevant action sounds in patients with spinal cord injury
Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema
State-of-the-art in aerodynamic shape optimisation methods
Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
- …