12 research outputs found

    Sub-graph based joint sparse graph for sparse code multiple access systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches

    A Reliable Multiple Access Scheme Based on Chirp Spread Spectrum and Turbo Codes

    Get PDF
    Nowadays, smart devices are the indispensable part of everyone's life and they play an important role in the advancement of industries and businesses.These devices are able to communicate with themselves and build the super network of the Internet of Things(IoT). Therefore, the need for the underlying structure of wireless data communications gains momentum. We require a wireless communication to support massive connectivity with ultra-fast data transmission rate and ultra-low latency. This research explores two possible methods of tackling the issues of the current communication systems for getting closer to the realization of the IoT. First, a grant-free scheme for uplink communication is proposed. The idea is to the combine the control signals with data signals by superimposing them on top of each other with minimal degradation of both signals. Moreover, it is well-established that orthogonal multiple access schemes cannot support the massive connectivity. Ergo, the second part of this research investigates a Non-Orthogonal Multiple Access(NOMA) scheme that exploits the powerful notion of turbo codes for separating the signals in a slow fading channel. It has been shown that in spite of the simplicity of the design, it has the potentials to surpass the performance of Sparse Code Multiple Access(SCMA) scheme

    Sparse or Dense: A Comparative Study of Code-Domain NOMA Systems

    Get PDF
    This paper is focused on code-domain non-orthogonal multiple access (CD-NOMA), which is an emerging paradigm to support massive connectivity for future machine-type wireless networks. We take a comparative approach to study two types of overloaded CD-NOMA, i.e., sparse code multiple access (SCMA) and dense code multiple access (DCMA), which are distinctive from each other in terms of their codebooks having sparsity or not. By analysing their individual diversity orders (DO) in Rayleigh fading channels, it is found that DCMA can be designed with the aid of generalized sphere decoder (i.e., a nonlinear multiuser detector) to enjoy full DO which is equal to the maximum number of resource nodes in the system. This is in contrast to SCMA whose error rate suffers from limited DO equal to the codebook sparsity (i.e., the effective number of resource nodes occupied by each user). We conduct theoretical analysis for the codebook design criteria and propose to use generalized sphere decoder for DCMA detection. We numerically evaluate two types of multiple access schemes under “4 × 6” (i.e., six users communicate over four subcarriers) and “5 × 10” NOMA settings and reveal that DCMA gives rise to significantly improved error rate performance in Rayleigh fading channels, whilst having decoding complexity comparable to that of SCMA

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    The Interplay between Computation and Communication

    Get PDF
    In this thesis, a comprehensive exploration into the integration of communication and learning within the massive Internet of Things (mIoT) is undertaken. Addressing one of the fundamental challenges of mIoT, where traditional channel estimation methods prove inefficient due to high device density and short packets; initially, a novel approach leveraging unsupervised machine learning for joint channel estimation and signal detection is proposed. This technique utilizes the Gaussian mixture model (GMM) clustering of received signals, thereby reducing the necessity for exhaustive channel estimation, decreasing the number of required pilot symbols, and enhancing symbol error rate (SER) performance. Building on this foundation, an innovative method is proposed that eliminates the need for pilot symbols entirely. By coupling GMM clustering with rotational invariant (RI) coding, the model maintains robust performance against the effects of channel rotation, thereby improving the efficiency of mIoT systems. This research delves further into integrating communication and learning in mIoT, specifically focusing on federated learning (FL) convergence under error-prone conditions. It carefully analyzes the impact of factors like block length, coding rate, and signal-to-noise ratio on FL's accuracy and convergence. A novel approach is proposed to address communication error challenges, where the base station (BS) uses memory to cache key parameters. Closing the thesis, an extensive simulation of a real-world mIoT system, integrating previously developed techniques, such as the innovative channel estimation method, RI coding, and the introduced FL model. It notably demonstrates that optimal learning outcomes can be achieved even without stringent communication reliability. Thus, this work not only achieves comparable or superior performance to traditional methods with fewer pilot symbols but also provides valuable insights for optimizing mIoT systems within the FL framework

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    Advances in Wireless Communications: Multi-user Constellation Design and Semantic Information Coding

    Get PDF
    The realization of high data rate wireless communication and large-scale connectivity with seamless coverage has been enabled by the introduction of various advanced transmission technologies, such as multiple access (MAC) technology and relay-assisted communications. However, beyond the accurate representation and successful transmission of information, in many applications it is the semantic aspect of that information that is really of interest. This thesis makes contributions to both the technology of conventional wireless communications and the theory of semantic communication. The main work is summarized as follows: We first consider an uplink system with K single-antenna users and one base station equipped with a single antenna, where each user utilizes a binary constellation to carry data. By maximizing the minimum Euclidean distance of the received sum constellation, the optimal user constellations and sum constellation are obtained for K=3 users. Using the principle of lattice coding, that design is extended to the K-user case. In both settings, the sum constellation belongs to additively uniquely decomposable constellation group (AUDCG). That property enables us to reduce the maximum likelihood multi-user detector to a single-user quantization based receiver. The symbol error probability (SEP) formula is derived, showing that our proposed non-orthogonal multiple access (NOMA) scheme outperforms the existing time division multiple access (TDMA) designs for the same system. Our design also sheds light on the general complex constellation designs for the MAC channel with arbitrary user constellation size. Specifically, K-user constellations with any 2^Mk size can be obtained using combinations of the proposed binary constellations. Next we concentrate on a multi-hop relay network with two time slots, consisting of single-antenna source and amplify-and-forward relay nodes and a destination node with M antennas. We develop a novel uniquely-factorable constellation set (UFCS) based on a PSK constellation for such system to allow the source and relay nodes to transmit their own information concurrently at the symbol level. By taking advantage of the uniquely-factorable property, the optimal maximum likelihood (ML) detection was equivalently reduced to a symbol-by-symbol detection based on phase quantization. In addition, the SEP formula was given, while enable us to show that the diversity gain of the system is one. For semantic communication, a new source model is considered, which consists of an intrinsic state part and an extrinsic observation part. The intrinsic state corresponds to the semantic feature of the source. It is not observable, and can only be inferred from the extrinsic observation. As an instance of the general model, the case of Gaussian distributed extrinsic observations is studied, where we assume a linear relationship between the intrinsic and extrinsic parts. We derive the rate-distortion function (in both centralized encoding and distributed encoding) of semantic-aware source coding under quadratic distortion structure by converting the semantic distortion constraint of the source to a surrogate distortion constraint on the observations. With proposed AUDCG and UFCS-based designs, high data rates as well as low detection latency can be achieved. Our modulation division method will be one of the promising technologies for the next generation communication and the analysis of the source coding with semantic information constraints also provides some insights that will guide the future development of semantic communication systems.ThesisDoctor of Philosophy (PhD)The proliferation of smart phones and electronic devices has spurred explosive growth in high-speed multimedia services over the next generation of wireless cellular networks. Indeed, high data rates and large-scale connectivity with seamless coverage are the dominant themes of wireless communication system design. Moreover, beyond the accurate representation and successful transmission of information, the interpretation of its meaning is being paid more attention nowadays, which requires the development of approaches to semantic communication. The goal of this thesis is to contribute to the development of both conventional and semantic communication systems. Two advanced transmission technologies, namely, multiple access and relay-assisted communications are considered. By taking advantage of the special structures of digital communication signals, new approaches to multiple access and relay-assisted communications are developed. These designs enable high data rates, while simultaneously facilitating low-latency detection. Since there has been very limited analysis of the source coding of a vector source subject to semantic information constraints, we also study the rate distortion to trade-off for vector sources in both the case of centralized encoding and the case of distributed encoding, and we establish some insights that will guide the future development of semantic communication systems

    Algorithms for 5G physical layer

    Get PDF
    There is a great activity in the research community towards the investigations of the various aspects of 5G at different protocol layers and parts of the network. Among all, physical layer design plays a very important role to satisfy high demands in terms of data rates, latency, reliability and number of connected devices for 5G deployment. This thesis addresses he latest developments in the physical layer algorithms regarding the channel coding, signal detection, frame synchronization and multiple access technique in the light of 5G use cases. These developments are governed by the requirements of the different use case scenarios that are envisioned to be the driving force in 5G. All chapters from chapter 2 to 5 are developed around the need of physical layer algorithms dedicated to 5G use cases. In brief, this thesis focuses on design, analysis, simulation and he advancement of physical layer aspects such as 1. Reliability based decoding of short length Linear Block Codes (LBCs) with very good properties in terms of minimum hamming istance for very small latency requiring applications. In this context, we enlarge the grid of possible candidates by considering, in particular, short length LBCs (especially extended CH codes) with soft-decision decoding; 2. Efficient synchronization of preamble/postamble in a short bursty frame using modified Massey correlator; 3. Detection of Primary User activity using semiblind spectrum sensing algorithms and analysis of such algorithms under practical imperfections; 4. Design of optimal spreading matrix for a Low Density Spreading (LDS) technique in the context of non-orthogonal multiple access. In such spreading matrix, small number of elements in a spreading sequences are non zero allowing each user to spread its data over small number of chips (tones), thus simplifying the decoding procedure using Message Passing Algorithm (MPA)
    corecore