2,183,567 research outputs found

    A night-time measurement of ozone above 40 km

    Get PDF
    Night-time photometer measurements of ozone concentration at high altitud

    Probing the Interstellar Medium using HI absorption and emission towards the W3 HII region

    Full text link
    HI spectra towards the W3 HII complex are presented and used to probe the Galactic structure and interstellar medium conditions between us and this region. The overall shape of the spectra is consistent with the predictions of the Two-Arm Spiral Shock model wherein the gas found in the -40 km/s to -50 km/s range has been accelerated by some 20 km/s from its rotation curve velocity. Spin temperatures of ~100 K are derived for the Local Arm gas, lower than found in a previous, similar study towards DR 7. For the interarm region, values on the order of 300 K are found, implying a negligible filling factor for the Cold Neutral Medium (<< 1%). Some of the absorbing gas at velocities near -40 km/s is confirmed to be associated with the HII regions.Comment: 23 pages, 6 figures, accepted for publication in the Astronomical Journa

    Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    Get PDF
    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves

    Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms

    Get PDF
    Upper mantle seismic velocity structures in both vertical and horizontal directions are key to understanding the structure and mechanics of tectonic plates. Recent deployment of the USArray Transportable Array (TA) in the Midwestern United States provides an extraordinary regional earthquake data set to investigate such velocity structure beneath the stable North American craton. In this paper, we choose an M_w5.1 Canadian earthquake in the Quebec area, which is recorded by about 400 TA stations, to examine the P wave structures between the depths of 150 km to 800 km. Three smaller Midwestern earthquakes at closer distance to the TA are used to investigate vertical and horizontal variations in P velocity between depths of 40 km to 150 km. We use a grid-search approach to find the best 1-D model, starting with the previously developed S25 regional model. The results support the existence of an 8° discontinuity in P arrivals caused by a negative velocity gradient in the lithosphere between depths of 40 km to 120 km followed by a small (∼1%) jump and then a positive gradient down to 165 km. The P velocity then decreases by 2% from 165 km to 200 km, and we define this zone as the regional lithosphere-asthenosphere boundary (LAB). Beneath northern profiles, waves reflected from the 410 discontinuity (410) are delayed by up to 1 s relative to those turning just below the 410, which we explain by an anomaly just above the discontinuity with P velocity reduced by ∼3%. The 660 discontinuity (660) appears to be composed of two smaller velocity steps with a separation of 16 km. The inferred low-velocity anomaly above 410 may indicate high water concentrations in the transition zone, and the complexity of the 660 may be related to Farallon slab segments that have yet to sink into the deep mantle

    An analysis of the Venera 8 measurements

    Get PDF
    Analysis of the Venera 8 measurements yielded equatorial morning terminator horizontal and vertical winds which are similar to the winds obtained from the Venera 7 measurements. The lower boundary of the horizontal retrograde 4-day wind is defined by a 50-60% decrease in wind speed in the vicinity of 44 km and there exists a retrograde wind plateau of 15 to 40 m/s winds extending from 40 km down to the vicinity of 18 km where the winds decrease rapidly to the order of 0.1 m/s near the surface. Up drafts of 2 to 5 m/s exist in the vicinity of 20 to 30 km and are apparently associated with a slightly super adiabatic lapse rate. The temperature lapse-rate, surface radius, surface topography, and atmospheric structure are discussed

    The middle Waikato Basin and hills

    Get PDF
    The middle Waikato (or Hamilton) Basin is a roughly oval-shaped depression more than 80 km north to south and more than 40 km wide. The basin, except in the south, is almost completely surrounded by ranges up to 300 m high, broken by only a few gaps. In the south the basin floor rises gradually and merges with the dissected plateaux of the King Country

    CO on Titan: More Evidence for a Well-Mixed Vertical Profile

    Full text link
    We report new interferometric observations of the CO (2-1) rotational transition on Titan. We find that the spectrum is best fit by a uniform profile of 52 ppm, with estimated errors of 6 ppm (40 to 200 km) and 12 ppm (200 to 300 km).Comment: Submitted to as a Note to Icarus. Uses emulateapj.sty under Latex, 6 text pages, 2 figs (includes with psfig

    Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery

    Get PDF
    Polar mesoscale cyclones over the subarctic are thought to be an important component of the coupled atmosphere–ocean climate system. However, the relatively small scale of these features presents some concern as to their representation in the meteorological reanalysis datasets that are commonly used to drive ocean models. Here polar mesocyclones are detected in the 40-Year European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis dataset (ERA-40) in mean sea level pressure and 500-hPa geopotential height, using an automated cyclone detection algorithm. The results are compared to polar mesocyclones detected in satellite imagery over the northeast Atlantic, for the period October 1993–September 1995. Similar trends in monthly cyclone numbers and a similar spatial distribution are found. However, there is a bias in the size of cyclones detected in the reanalysis. Up to 80% of cyclones larger than 500 km are detected in MSL pressure, but this hit rate decreases, approximately linearly, to ∼40% for 250-km-scale cyclones and to ∼20% for 100-km-scale cyclones. Consequently a substantial component of the associated air–sea fluxes may be missing from the reanalysis, presenting a serious shortcoming when using such reanalysis data for ocean modeling simulations. Eight maxima in cyclone density are apparent in the mean sea level pressure, clustered around synoptic observing stations in the northeast Atlantic. They are likely spurious, and a result of unidentified shortcomings in the ERA-40 data assimilation procedure
    corecore