716,187 research outputs found
New Interactive Solar Flare Modeling and Advanced Radio Diagnostics Tools
The coming years will see routine use of solar data of unprecedented spatial
and spectral resolution, time cadence, and completeness in the wavelength
domain. To capitalize on the soon to be available radio facilities such as the
expanded OVSA, SSRT and FASR, and the challenges they present in the
visualization and synthesis of the multi-frequency datasets, we propose that
realistic, sophisticated 3D active region and flare modeling is timely now and
will be a forefront of coronal studies over the coming years. Here we summarize
our 3D modeling efforts, aimed at forward fitting of imaging spectroscopy data,
and describe currently available 3D modeling tools. We also discuss plans for
future generalization of our modeling tools.Comment: 4 pages; IAU Symposium # 274 "Advances in Plasma Astrophysics"; typo
remove
Recommended from our members
Optimization of 2D CT Data Sets for Three-Dimensional
Computer-generated anatomic modeling using radiologic data is a well-known entity. Currently,
state of the art 3D modeling systems lack the variable thresholding, user interactive, capabilities of
3D imaging software.1 We investigated clinical parameters - cr scan plane, 2D filter algorithm,
surrounding medium - and tested a simple mathematical thresholding algorithm based upon
experimentation with a cr phantom, to evaluate a semiautomated approach to 3D craniofacial
imaging and model generation. (Figure 1)Mechanical Engineerin
Real-time Spatial Detection and Tracking of Resources in a Construction Environment
Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed
Gesture based human-computer interface for 3D design
modeling are amongst the most important fields of interest in current computer vision research. However, traditional hand recognition systems can only operate in constrained environments using coloured gloves or static backgrounds and do not allow for 3D object manipulation. The goal of this research is to develop real-time camera based solutions to control 3D modeling applications using natural hand gestures
Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction
Conventional methods of 3D object generative modeling learn volumetric
predictions using deep networks with 3D convolutional operations, which are
direct analogies to classical 2D ones. However, these methods are
computationally wasteful in attempt to predict 3D shapes, where information is
rich only on the surfaces. In this paper, we propose a novel 3D generative
modeling framework to efficiently generate object shapes in the form of dense
point clouds. We use 2D convolutional operations to predict the 3D structure
from multiple viewpoints and jointly apply geometric reasoning with 2D
projection optimization. We introduce the pseudo-renderer, a differentiable
module to approximate the true rendering operation, to synthesize novel depth
maps for optimization. Experimental results for single-image 3D object
reconstruction tasks show that we outperforms state-of-the-art methods in terms
of shape similarity and prediction density
Component-wise modeling of articulated objects
We introduce a novel framework for modeling articulated objects based on the aspects of their components. By decomposing the object into components, we divide the problem in smaller modeling tasks. After obtaining 3D models for each component aspect by employing a shape deformation paradigm, we merge them together, forming the object components. The final model is obtained by assembling the components using an optimization scheme which fits the respective 3D models to the corresponding apparent contours in a reference pose. The results suggest that our approach can produce realistic 3D models of articulated objects in reasonable time
3D MODELING AND THE ROLE OF 3D MODELING IN OUR LIFE
In 3D computer graphics, 3D modeling is the process of developing a mathematical representation of any three-dimensional surface of an object (either inanimate or living) via specialized software. The product is called a 3D model. It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices. Models may be created automatically or manually. The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D modeling software is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called modeling applications or modelers.In 3D computer graphics, 3D modeling is the process of developing a mathematical representation of any three-dimensional surface of an object (either inanimate or living) via specialized software. The product is called a 3D model. It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices. Models may be created automatically or manually. The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D modeling software is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called modeling applications or modelers
- …