302,570 research outputs found

    3D-printing techniques in a medical setting : a systematic literature review

    Get PDF
    Background: Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Methods: Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. Results: 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. Conclusion: 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D- printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Utilizing rapid prototyping 3D printer for fabricating flexographic PDMS printing plate

    Get PDF
    Recently printed electronic field is significantly growth. Printed electronic is to develop electrical devices by printing method. Conventional printing method that has been studied for this kind of printed electronic such as flexographic, micro contact printing, screen printing, gravure and ink jet. In flexographic and microcontact printing, a printing plate is used to transfer the designed and desired pattern to substrate through conformed contact. Therefore printing plate is play a big role in this area. Printing plate making by photopolymer which used in flexographic have limitation in achieving a micro-scale of pattern size. However, printing plate of microcontact printing have an advantages in producing micro, even nano-scale size by PDMS (Polydimethylsiloxane). Hence, rapid prototyping 3D printer was used for developing a PDMS micro-scale printing plate which will be used in reel to reel (R2R) flexographic due to high speed, low cost, mass production of this type of printing process. The flexibility of 3D printer in producing any shape of pattern easily, contributed the success of this study. A nickel plating and glass etching master pattern was used in this study too as master pattern mould since 3D printer has been reached the micro size limitation. The finest multiple solid line array with 1mm width and 2mm gap pattern of printing plate was successfully fabricated by 3D printer master mould due to size limitation of the FDM (Fused Deposition Modeling) 3D printer nozzle itself. However, the micro-scale multiple solid line array of 100micron and 25micron successfully made by nikel platting and glass etching master mould respectively. Those types of printing plate producing method is valueable since it is easy, fast and low cost, used for micro-flexographic in printed electronic field or biomedical application

    Utilization of Recycled Filament for 3D Printing for Consumer Goods

    Get PDF
    The 3D printing market has been used in a wide variety of manufacturing industries including textile and apparel. Many consumers can now own a personal 3D printer at home for recreational printing. There are even websites dedicated to 3D printing patterns made by consumers. However, the materials used in the 3D printing process pose a problem for the environment due to their plastic-based nature. 3D printing is a layered process with each layer being printed depending on the layer below it for strength and stability. During the 3D printing process, great amounts of waste are produced as a result of printing errors that, having occurred, cannot be reused. This waste is plastic based and therefore does not readily biodegrade. Using 3D printing filament created from recycled materials (i.e. plastic bottles) could transform the waste into new re-useable materials which ultimately could reduce the harmful effect of plastic products on the environment over time. One such plastic product is plastic instrument mouthpieces. The current plastic mouthpieces on the market are not created using recycled plastics, so when they break they only contribute to the plastic waste in landfills. Therefore, the study focused on creating functional 3D printed mouthpieces from rPETG filament (Recycled Polyethylene Terephthalate Glycol-modified filament) for the University of Arkansas Hogwild Band brass players to be used during performances. A total of 29 mouthpieces were created for trumpet, trombone, and tuba players in the band and were utilized for the 2020 Hogwild season. Participants were then asked to share their feedback about the performance of the mouthpieces for the final part of the study

    Exploring the Abilities of 3D Printing and its Viability for Consumption in the Fashion Industry

    Get PDF
    Abstract With the ever-evolving state of today’s technology, designers and retailers in the apparel industry are seeking out new technological methods that have the capacity to revolutionize and individualize their brand, as well as meet consumer needs and preferences. An emerging technology is 3D printing, which utilizes computer-aided technology and a variety of filaments to construct an object. Though 3D printing technology offers the ability for rapid prototyping, a condensed supply chain, and a sustainable additive manufacturing process, there is question as to whether or not consumers are ready for 3D printed clothing to enter their wardrobes. In this creative study, the authors designed a 3D printed garment in order to test whether 3D printers could be used to make wearable clothing of similar characteristics to clothing typically made of fabric. A survey was then conducted on the University of Arkansas campus to measure consumer response to the project garment. Three primary factors were measured: prior exposure and interest in 3D printing, general fashion interest, and aesthetic appeal of the project 3D printed garment. Overall perceptions of the project garment as well as further use of 3D printing for the apparel industry were positive. The ability of this study to create a fully 3D printed garment as well as understand consumer response to 3D printed clothing provides insight into this emerging technology. The results warrant further research into its capabilities for fashion and that the fashion industry could move towards adopting this technology on a wider scale in coming years. The results indicate that a major transformation in ready-to-wear style is feasible and beneficial to the apparel industry because of 3D printing. Keywords: 3D printing, fashion, consumer preference, sustainability, apparel, technolog

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    A process parameters dataset for the extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures

    Get PDF
    We report the parameter settings used in different 3D printing tests carried out to evaluate the production of nutraceutical oral forms by using mixtures of monoglycerides oleogels and phytosterols as printing materials. The printer employed was an ad-hoc extrusion 3D printing system adapted from a Prusa printer. The dataset here informed would serve as a starting point for the implementation of the 3D printing process to fabricate products using oleogels or printing materials with similar characteristics. This data is related to our recent research article entitled “Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures” [1].Fil: Cotabarren, Ivana María. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Cruces, Sofia. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Palla, Camila Andrea. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin
    • …
    corecore