13,273,513 research outputs found

    Superconductivity in a two dimensional extended Hubbard model

    Full text link
    The Roth's two-pole approximation has been used by the present authors to investigate the role of d−pd-p hybridization in the superconducting properties of an extended d−pd-p Hubbard model. Superconductivity with singlet dx2−y2d_{x^2-y^2}-wave pairing is treated by following Beenen and Edwards formalism. In this work, the Coulomb interaction, the temperature and the superconductivity have been considered in the calculation of some relevant correlation functions present in the Roth's band shift. The behavior of the order parameter associated with temperature, hybridization, Coulomb interaction and the Roth's band shift effects on superconductivity are studied.Comment: 14 pages, 8 figures, accepted for publication in European Physical Journal

    Coulomb parameters and photoemission for the molecular metal TTF-TCNQ

    Full text link
    We employ density-functional theory to calculate realistic parameters for an extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra- and intermolecular screening in the crystal, we find significant longer-range Coulomb interactions along the molecular stacks, as well as inter-stack coupling. We show that the long-range Coulomb term of the extended Hubbard model leads to a broadening of the spectral density, likely resolving the problems with the interpretation of photoemission experiments using a simple Hubbard model only.Comment: 4 pages, 2 figure

    Nuclear Effects in Deep Inelastic Scattering of Charged-Current Neutrino off Nuclear

    Full text link
    Nuclear effect in the neutrino-nucleus charged-Current inelastic scattering process is studied by analyzing the CCFR and NuTeV data. Structure functions F2(x,Q2)F_2(x,Q^2) and xF3(x,Q2)xF_3(x,Q^2) as well as differential cross sections are calculated by using CTEQ parton distribution functions and EKRS and HKN nuclear parton distribution functions, and compared with the CCFR and NuTeV data. It is found that the corrections of nuclear effect to the differential cross section for the charged-current anti-neutrino scattering on nucleus are negligible, the EMC effect exists in the neutrino structure function F2(x,Q2)F_2(x,Q^2) in the large xx region, the shadowing and anti-shadowing effect occurs in the distribution functions of valence quarks in the small and medium xx region,respectively. It is also found that shadowing effects on F2(x,Q2)F_2(x,Q^2) in the small xx region in the neutrino-nucleus and the charged-lepton-nucleus deep inelastic scattering processes are different. It is clear that the neutrino-nucleus deep inelastic scattering data should further be employed in restricting nuclear parton distributions.Comment: 24 pages, 5 figure

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Three-party qutrit-state sharing

    Full text link
    A three-party scheme for securely sharing an arbitrary unknown single-qutrit state is presented. Using a general Greenberger-Horne-Zeilinger (GHZ) state as the quantum channel among the three parties, the quantum information (i.e., the qutrit state) from the sender can be split in such a way that the information can be recovered if and only if both receivers collaborate. Moreover, the generation of the scheme to multi-party case is also sketched.Comment: 7 page

    One-step generation of high-quality squeezed and EPR states in cavity QED

    Full text link
    We show how to generate bilinear (quadratic) Hamiltonians in cavity quantum electrodynamics (QED) through the interaction of a single driven three-level atom with two (one) cavity modes. With this scheme it is possible to generate one-mode mesoscopic squeezed superpositions, two-mode entanglements, and two-mode squeezed vacuum states (such the original EPR state), without the need for Ramsey zones and external parametric amplification. The degree of squeezing achieved is up to 99% with currently feasible experimental parameters and the errors due to dissipative mechanisms become practically negligible

    The Making of the Standard Model

    Full text link
    This is the edited text of a talk given at CERN on Septembr 16, 2003, as part of a celebration of the 30th anniversary of the discovery of neutral currents and the 20th anniversary of the discovery of the W and Z particles.Comment: 21 page

    Quark production in high energy proton-nucleus collisions

    Full text link
    In this note, we discuss the problem of quark-antiquark pair production in the framework of the color glass condensate. The cross-section can be calculated in closed form for the case of proton-nucleus collisions, where the proton can be considered to be a dilute object. We find that kt-factorization is broken by rescattering effects.Comment: 6 pages, 3 figures, based on talks given at Hard Probes 2004 by H. Fujii and F. Geli

    A Method Based on a Nonlinear Generalized Heisenberg Algebra to Study the Molecular Vibrational Spectrum

    Full text link
    We propose a method, based on a Generalized Heisenberg Algebra (GHA), to reproduce the anharmonic spectrum of diatomic molecules. The theoretical spectrum generated by GHA allows us to fit the experimental data and to obtain the dissociation energy for the carbon monoxide molecule. Our outcomes are more accurate than the standard models used to study molecular vibrations, namely the Morse and the qq-oscillator models and comparable to the perturbed Morse model proposed by Huffaker \cite{hf}, for the first experimental levels. The dissociation energy obtained here is more accurate than all previous models

    Guarding curvilinear art galleries with edge or mobile guards via 2-dominance of triangulation graphs

    Get PDF
    AbstractIn this paper we consider the problem of monitoring an art gallery modeled as a polygon, the edges of which are arcs of curves, with edge or mobile guards. Our focus is on piecewise-convex polygons, i.e., polygons that are locally convex, except possibly at the vertices, and their edges are convex arcs.We transform the problem of monitoring a piecewise-convex polygon to the problem of 2-dominating a properly defined triangulation graph with edges or diagonals, where 2-dominance requires that every triangle in the triangulation graph has at least two of its vertices in its 2-dominating set. We show that: (1) ⌊n+13⌋ diagonal guards are always sufficient and sometimes necessary, and (2) ⌊2n+15⌋ edge guards are always sufficient and sometimes necessary, in order to 2-dominate a triangulation graph. Furthermore, we show how to compute: (1) a diagonal 2-dominating set of size ⌊n+13⌋ in linear time and space, (2) an edge 2-dominating set of size ⌊2n+15⌋ in O(n2) time and O(n) space, and (3) an edge 2-dominating set of size ⌊3n7⌋ in O(n) time and space.Based on the above-mentioned results, we prove that, for piecewise-convex polygons, we can compute: (1) a mobile guard set of size ⌊n+13⌋ in O(nlogn) time, (2) an edge guard set of size ⌊2n+15⌋ in O(n2) time, and (3) an edge guard set of size ⌊3n7⌋ in O(nlogn) time. All space requirements are linear. Finally, we show that ⌊n3⌋ mobile or ⌈n3⌉ edge guards are sometimes necessary.When restricting our attention to monotone piecewise-convex polygons, the bounds mentioned above drop: ⌈n+14⌉ edge or mobile guards are always sufficient and sometimes necessary; such an edge or mobile guard set, of size at most ⌈n+14⌉, can be computed in O(n) time and space
    • 

    corecore