7,364 research outputs found

    Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates

    Get PDF
    Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM). Time-lapse 3-D imaging of multicellular spheroids expressing a glucose Förster resonance energy transfer (FRET) biosensor is demonstrated in 16 fields of view with image acquisition at 10 minute intervals. As a proof-of-principle, the ssOPM system is also used to acquire a dose response curve with the concentration of glucose in the culture medium being varied across 42 wells of a 96-well plate with the whole acquisition taking 9 min. The 3-D image data enable the FRET ratio to be measured as a function of distance from the surface of the spheroid. Overall, the results demonstrate the capability of the OPM system to measure spatio-temporal changes in FRET ratio in 3-D in multicellular spheroids over time in a multi-well plate format

    ReViMS: Software tool for estimating the volumes of 3-D multicellular spheroids imaged using a light sheet fluorescence microscope

    Get PDF
    Cancer 3-D spheroids are widely used to test drugs and radiotherapy treatments. These 3-D cell clusters range from tens to hundreds of micrometers in size, with shapes that typically differ from a perfect sphere. Change in spheroid volume is one of the most important parameters for evaluating treatment efficacy, and using light sheet fluorescence microscopes (LSFM), optical sections of samples in that size range can be obtained. However, there remains a lack of validated methods for quantifying the volumes of 3-D multicellular aggregates. Here, we present Reconstruction and Visualization from Multiple Sections (ReViMS), an open-source, user-friendly software for automatically segmenting z-stacks of fluorescence images and estimating the volumes of 3-D multicellular spheroids. To assess the precision and accuracy of the volume estimates obtained with ReViMS, we used several cancer spheroids imaged with LSFM. Both the precision and accuracy were >95%, demonstrating the effectiveness of ReViMS

    Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug

    Get PDF
    A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud \ud Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids

    Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach

    Get PDF
    We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud confined tumour growth and to model its impact on cellular processes

    Emergent Properties of Tumor Microenvironment in a Real-life Model of Multicell Tumor Spheroids

    Get PDF
    Multicellular tumor spheroids are an important {\it in vitro} model of the pre-vascular phase of solid tumors, for sizes well below the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and organization of tumors at a critical phase of their development. To this end, we have developed a computer program that integrates the behavior of individual cells and their interactions with other cells and the surrounding environment. It is based on a quantitative description of metabolism, growth, proliferation and death of single tumor cells, and on equations that model biochemical and mechanical cell-cell and cell-environment interactions. The program reproduces existing experimental data on spheroids, and yields unique views of their microenvironment. Simulations show complex internal flows and motions of nutrients, metabolites and cells, that are otherwise unobservable with current experimental techniques, and give novel clues on tumor development and strong hints for future therapies.Comment: 20 pages, 10 figures. Accepted for publication in PLOS One. The published version contains links to a supplementary text and three video file

    The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy.

    Get PDF
    BackgroundTumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma.Methodology/principal findingsHere, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro.Conclusion/significanceThis work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. We believe that the methods developed here may apply to the studies of other tumor-targeting antibodies and immunoconjugates in vitro

    Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence

    Get PDF
    Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies

    Radiosensitization of prostate cancer cells by 2-deoxyglucose

    Get PDF
    Prostate cancer is the most common malignancy of men. Treatment options include radiotherapy with or without hormonal manipulation and radical prostatectomy. However, there is no effective treatment for disseminated disease. A hallmark of malignancy is abnormal metabolism which also confers survival advantages and contributes to resistance to therapy. In response to exposure to ionizing radiation, metabolic pathways are activated which can protect the cell from irreversible injury. Tumor cell glycolytic activity is elevated and correlates with aggressiveness and radio resistance, indicating that targeting glucose metabolism may sensitize cancer cells to radiation. We have demonstrated that the clonogenic kill of PC3 cells induced by exposure to x-rays was enhanced by the glycolytic inhibitor 2-deoxyglucose (2DG). In contrast, treatment with 2DG failed to inhibit growth of multicellular spheroids derived from LNCaP cells. However, 2DG treatment, in the absence of irradiation, induced similar toxicity to PC3 and LNCaP cells cultured as monolayers. Radiation-induced cell cycle arrest was prevented by the simultaneous administration of 2DG in both cell lines, indicating a possible mechanism underlying sensitization. Therefore, we hypothesise that observed differences in cellular response to incubation with 2DG in the presence or absence of ionizing radiation resulted from variation in metabolic processes between tumor cell types. We conclude that inhibition of glucose metabolism by 2DG is an effective method for sensitizing prostate cancer cells to experimental radiotherapy and that this may occur by preventing DNA repair during radiation-induced cell cycle arrest
    • …
    corecore