663,211 research outputs found
A Measurement of the Tau Hadronic Branching Ratios
The exclusive and semi-exclusive branching ratios of the tau lepton hadronic
decay modes (h- v_t, h- pi0 v_t, h- pi0 pi0 v_t, h- \geq 2pi0 v_t, h- \geq 3pi0
v_t, 2h- h+ v_t, 2h- h+ pi0 v_t, 2h- h+ \geq 2pi0 v_t, 3h- 2h+ v_t and 3h- 2h+
\geq 1pi0 v_t) were measured with data from the DELPHI detector at LEP.Comment: 53 pages, 18 figures, Accepted by Eur. Phys. J.
Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of -TaS
We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study
on -TaS, a canonical incommensurate Charge Density Wave (CDW) system.
This study demonstrates that just as in related incommensurate CDW systems,
-TaSe and -NbSe, the energy gap () of
-TaS is localized along the K-centered Fermi surface barrels and is
particle-hole asymmetric. The persistence of even at
temperatures higher than the CDW transition temperature
in -TaS, reflects the similar pseudogap (PG) behavior observed
previously in -TaSe and -NbSe. However, in sharp contrast to
-NbSe, where is non-zero only in the vicinity
of a few "hot spots" on the inner K-centered Fermi surface barrels,
in -TaS is non-zero along the entirety of both
K-centered Fermi surface barrels. Based on a tight-binding model, we attribute
this dichotomy in the momentum dependence and the Fermi surface specificity of
between otherwise similar CDW compounds to the
different orbital orientations of their electronic states that are involved in
CDW pairing. Our results suggest that the orbital selectivity plays a critical
role in the description of incommensurate CDW materials.Comment: 6 pages, 4 figure
Amplitude `Higgs' mode in 2H-NbSe2 Superconductor
We report experimental evidences for the observation of the superconducting
amplitude mode, so-called `Higgs' mode in the charge density wave
superconductor 2H-NbSe2 using Raman scattering. By comparing 2H-NbSe2 and its
iso-structural partner 2H-NbS2 which shows superconductivity but lacks the
charge density wave order, we demonstrate that the superconducting mode in
2H-NbSe2 owes its spectral weight to the presence of the coexisting charge
density wave order. In addition, temperature dependent measurements in 2H-NbSe2
show a full spectral weight transfer from the charge density wave mode to the
superconducting mode upon entering the superconducting phase. Both observations
are fully consistent with a superconducting amplitude mode or Higgs mode.Comment: Accepted for publication in Phys. Rev. B Rapid Com. 5 pages with 3
figure
Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS 2 and 2H-TaSe 2
We present measurements of the superconducting and charge density wave
critical temperatures (Tc and TCDW) as a function of pressure in the transition
metal dichalchogenides 2H-TaSe2 and 2H-TaS2. Resistance and susceptibility
measurements show that Tc increases from temperatures below 1 K up to 8.5 K at
9.5 GPa in 2H-TaS2 and 8.2 K at 23 GPa in 2H-TaSe2. We observe a kink in the
pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in
transition from incommensurate CDW to commensurate CDW. Above this pressure,
the commensurate TCDW slowly decreases coexisting with superconductivity within
our full pressure range.Comment: Published in Phys. Rev B 93, 184512 (2016
Magnetism in Semiconducting Molybdenum Dichalcogenides
Transition metal dichalcogenides (TMDs) are interesting for understanding
fundamental physics of two-dimensional materials (2D) as well as for many
emerging technologies, including spin electronics. Here, we report the
discovery of long-range magnetic order below TM = 40 K and 100 K in bulk
semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon
spin-rotation (muSR), scanning tunneling microscopy (STM), as well as density
functional theory (DFT) calculations. The muon spin rotation measurements show
the presence of a large and homogeneous internal magnetic fields at low
temperatures in both compounds indicative of long-range magnetic order. DFT
calculations show that this magnetism is promoted by the presence of defects in
the crystal. The STM measurements show that the vast majority of defects in
these materials are metal vacancies and chalcogen-metal antisites which are
randomly distributed in the lattice at the sub-percent level. DFT indicates
that the antisite defects are magnetic with a magnetic moment in the range of
0.9-2.8 mu_B. Further, we find that the magnetic order stabilized in 2H-MoTe2
and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations
establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and
opens a path to studying the interplay of 2D physics and magnetism in these
interesting semiconductors.Comment: 13 pages, 10 Figure
Coexistence of gapless excitations and commensurate charge-density wave in the 2H-transition metal dichalcogenides
An unexpected feature common to 2H-transition metal dichalcogenides (2H-TMDs)
is revealed with first-principles Wannier functions analysis of the electronic
structure of the prototype 2H-TaSe2: The low-energy Ta \red{``''}
bands governing the physics of charge-density wave (CDW) is dominated by
hopping between next-nearest neighbors. With this motivation we develop a
minimal effective model for the CDW formation, in which the unusual form of the
hopping leads to an approximate decoupling of the three sublattices. In the CDW
phase one sublattice remains undistorted, leaving the bands associated with it
ungapped everywhere in the Fermi surface, resolving the long-standing puzzle of
coexistence of gapless excitations and commensurate CDW in the 2H-TMDs.Comment: 4 pages, 5 figure
- …