17,143 research outputs found

    The influence of glutathione S-transferases M1 and M3 on the development of bladder cancer

    Get PDF
    Problem: Cigarette smoking is the most important risk factor of transitional cell carcinoma of the urinary bladder. The effect of the glutathione S- transferases M1 (GSTM1) and M3 (GSTM3) on the influence of this risk factor was investigated. Methods: A total of 293 bladder cancer patients from Dortmund and Wittenberg as well as 176 surgical patients without any malignancy from Dortmund were genotyped for GSTM1 und GSTM3 according to standard PCR/RFLP methods. Smoking habits were also qualified by a standardized interview. Results: The percentage of GSTM1 negative cases was 63 % in the entire bladder cancer patient group compared to 50 % in the control group. GSTM3*A/*A genotype was 76 % in the entire group of bladder cancer cases and 74 % in controls. Smokers and ex-smokers were overrepresented in the bladder cancer patient group. A significant association between smoking status and GSTM1 or GSTM3 genotype could not be revealed. Conclusion: The elevated percentage of GSTM1 negative bladder cancer cases shows the important effect of this polymorphic enzyme on the development of bladder cancer. In contrast to some other studies, an influence of GSTM1 on the risk due to cigarette smoking could not be observed. --Bladder cancer,glutathione S-transferase M1,glutathione S-transferase M3,smoking

    A population-based study of glutathione-S-transferase M1, T1 and P1 genotypes

    Get PDF
    A retrospective study on healthy, unrelated subjects was conducted in order to estimate population glutathione-S-transferases (GST) genotype frequencies in Slovak population of men and compare our results with already published data (GSEC project)^1^. A further aim of the study was to evaluate frequencies of the _GST_ polymorphisms also in patients with prostate cancer in order to compare the evaluated proportions with those found in the control subjects. Analysis for the _GST_ gene polymorphisms was performed by PCR and PCR-RFLP. We found that the proportions are not significantly different from those estimated in a European multicentre study or from the results published by another group in Slovakia. We found significantly increased age-standardized prostate cancer prevalence rates in the carriers of _GSTM1_ null genotype (P = 0.037) and trend for such an increase in the carriers of _GSTP1_ polymorphism when compared with the respective groups of non-carriers. Because understanding of the contribution of _GST_ gene polymorphisms and their interactions with other relevant factors may improve screening diagnostic assays for prostate cancer, we discuss issues of study feasibility, study design, and statistical power, which should be taken into account in planning further trials

    MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation.

    Get PDF
    We show for the first time that, in contrast to other glutathione transferases and peroxidases, deletion of microsomal glutathione transferase 1 (MGST1) in mice is embryonic lethal. To elucidate why, we used zebrafish development as a model system and found that knockdown of MGST1 produced impaired hematopoiesis. We show that MGST1 is expressed early during zebrafish development and plays an important role in hematopoiesis. High expression of MGST1 was detected in regions of active hematopoiesis and co-expressed with markers for hematopoietic stem cells. Further, morpholino-mediated knock-down of MGST1 led to a significant reduction of differentiated hematopoietic cells both from the myeloid and the lymphoid lineages. In fact, hemoglobin was virtually absent in the knock-down fish as revealed by diaminofluorene staining. The impact of MGST1 on hematopoiesis was also shown in hematopoietic stem/progenitor cells (HSPC) isolated from mice, where it was expressed at high levels. Upon promoting HSPC differentiation, lentiviral shRNA MGST1 knockdown significantly reduced differentiated, dedicated cells of the hematopoietic system. Further, MGST1 knockdown resulted in a significant lowering of mitochondrial metabolism and an induction of glycolytic enzymes, energetic states closely coupled to HSPC dynamics. Thus, the non-selenium, glutathione dependent redox regulatory enzyme MGST1 is crucial for embryonic development and for hematopoiesis in vertebrates

    Synthesis and characterisation of a new benzamide-containing nitrobenzoxadiazole as a GSTP1-1 inhibitor endowed with high stability to metabolic hydrolysis

    Get PDF
    The antitumor agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (1) is a potent inhibitor of GSTP1-1, a glutathione S-transferase capable of inhibiting apoptosis by binding to JNK1 and TRAF2. We recently demonstrated that, unlike its parent compound, the benzoyl ester of 1 (compound 3) exhibits negligible reactivity towards GSH, and has a different mode of interaction with GSTP1-1. Unfortunately, 3 is susceptible to rapid metabolic hydrolysis. In an effort to improve the metabolic stability of 3, its ester group has been replaced by an amide, leading to N-(6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexyl)benzamide (4). Unlike 3, compound 4 was stable to human liver microsomal carboxylesterases, but retained the ability to disrupt the interaction between GSTP1-1 and TRAF2 regardless of GSH levels. Moreover, 4 exhibited both a higher stability in the presence of GSH and a greater cytotoxicity towards cultured A375 melanoma cells, in comparison with 1 and its analog 2. These findings suggest that 4 deserves further preclinical testing

    Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors.

    Get PDF
    BackgroundSchistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide.Principal findingsCercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone.Conclusions/significanceThis study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails

    Glutathione-S-Transferase and Thiol Stress in patients with acute renal failure

    Get PDF
    Introduction: Tubular damage is common finding in acute renal failure (ARF). Various etiologies have been put forth to explain the tubular damage in ARF, one important mechanism among them is oxidative damage to renal tubules. Several biomolecules including low-molecular weight peptides and enzymes in urine have been proposed as early markers of renal failure. Current study has been undertaken to study the thiol stress and glutathione-S-transferase (GST) levels in ARF patients. Method: 58 ARF patients and 55 healthy controls were selected based on inclusion and exclusion criteria. Serum thiols, GST, malanoldehyde (MDA) and urine thiols were determined by spectrophotometer based methods. Results: Serum thiols and urine thiols were significantly decreased (p<0.0001), and serum GST and MDA levels were significantly increased (p<0.0001) in ARF patients compared to healthy controls. Serum GST and MDA correlated positively in ARF cases (r2 = 0.6938, p<0.0001). Conclusion: There is significant thiol stress and increased lipid peroxidation in ARF patients which leads to tubular cell membrane damage and release of GST into blood stream and into urine. This may be possible mechanism for the increased presence of GST in urine (enzymuria) found in other studie

    Crystal structure of a murine α-class glutathione S-transferase involved in cellular defense against oxidative stress

    Get PDF
    Glutathione S-transferases (GSTs) are ubiquitous multifunctional enzymes which play a key role in cellular detoxification. The enzymes protect the cells against toxicants by conjugating them to glutathione. Recently, a novel subgroup of α-class GSTs has been identified with altered substrate specificity which is particularly important for cellular defense against oxidative stress. Here, we report the crystal structure of murine GSTA4-4, which is the first structure of a prototypical member of this subgroup. The structure was solved by molecular replacement and refined to 2.9 Å resolution. It resembles the structure of other members of the GST superfamily, but reveals a distinct substrate binding site.

    Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Get PDF
    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging
    • …
    corecore