199,056 research outputs found

    Proof of a recent conjecture of Z.-W. Sun

    Full text link
    The polynomials dn(x)d_n(x) are defined by \begin{align*} d_n(x) &= \sum_{k=0}^n{n\choose k}{x\choose k}2^k. \end{align*} We prove that, for any prime pp, the following congruences hold modulo pp: \begin{align*} \sum_{k=0}^{p-1}\frac{{2k\choose k}}{4^k} d_k\left(-\frac{1}{4}\right)^2 &\equiv \begin{cases} 2(-1)^{\frac{p-1}{4}}x,&\text{if p=x2+y2p=x^2+y^2 with x1(mod4)x\equiv 1\pmod{4},} 0,&\text{if p3(mod4)p\equiv 3\pmod{4},} \end{cases} [5pt] \sum_{k=0}^{p-1}\frac{{2k\choose k}}{4^k} d_k\left(-\frac{1}{6}\right)^2 &\equiv 0, \quad\text{if p>3p>3,} [5pt] \sum_{k=0}^{p-1}\frac{{2k\choose k}}{4^k} d_k\left(\frac{1}{4}\right)^2 &\equiv \begin{cases} 0,&\text{if p1(mod4)p\equiv 1\pmod{4},} (-1)^{\frac{p+1}{4}}{\frac{p-1}{2}\choose \frac{p-3}{4}},&\text{if p3(mod4)p\equiv 3\pmod{4}.} \end{cases} \sum_{k=0}^{p-1}\frac{{2k\choose k}}{4^k} d_k\left(\frac{1}{6}\right)^2 &\equiv 0, \quad\text{if p>5p>5.} \end{align*} The p3(mod4)p\equiv 3\pmod{4} case of the first one confirms a conjecture of Z.-W. Sun, while the second one confirms a special case of another conjecture of Z.-W. Sun.Comment: 4 page

    A congruence involving alternating harmonic sums modulo pαqβp^{\alpha}q^{\beta}

    Full text link
    In 2014, Wang and Cai established the following harmonic congruence for any odd prime pp and positive integer rr, \begin{equation*} \sum\limits_{i+j+k=p^{r}\atop{i,j,k\in \mathcal{P}_{p}}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} ~(\bmod ~ p^{r}), \end{equation*} where Pn\mathcal{P}_{n} denote the set of positive integers which are prime to nn. In this note, we obtain the congruences for distinct odd primes p, qp,~q and positive integers α, β\alpha,~\beta, \begin{equation*} \sum\limits_{i+j+k=p^{\alpha}q^{\beta}\atop{i,j,k\in\mathcal{P}_{pq}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk}\equiv\frac{7}{8}(2-q)(1-\frac{1}{q^{3}})p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{\alpha}} \end{equation*} and \begin{equation*} \sum\limits_{i+j+k=p^{\alpha}q^{\beta}\atop{i,j,k\in \mathcal{P}_{pq}}}\frac{(-1)^{i}}{ijk} \equiv \frac{1}{2}(q-2)(1-\frac{1}{q^{3}})p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{\alpha}}. \end{equation*} Finally, we raise a conjecture that for n>1n>1 and odd prime power pαnp^{\alpha}||n, α1\alpha\geq1, \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}_{n}}}\frac{(-1)^{i}}{ijk} \equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q^{3}})\frac{n}{2p}B_{p-3}\pmod{p^{\alpha}} \end{eqnarray} and \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}_{n}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk} \equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q^{3}})(-\frac{7n}{8p})B_{p-3}\pmod{p^{\alpha}}. \end{eqnarray

    Equitable vertex arboricity of graphs

    Full text link
    An equitable (t,k,d)(t,k,d)-tree-coloring of a graph GG is a coloring to vertices of GG such that the sizes of any two color classes differ by at most one and the subgraph induced by each color class is a forest of maximum degree at most kk and diameter at most dd. The minimum tt such that GG has an equitable (t,k,d)(t',k,d)-tree-coloring for every ttt'\geq t is called the strong equitable (k,d)(k,d)-vertex-arboricity and denoted by vak,d(G)va^{\equiv}_{k,d}(G). In this paper, we give sharp upper bounds for va1,1(Kn,n)va^{\equiv}_{1,1}(K_{n,n}) and vak,(Kn,n)va^{\equiv}_{k,\infty}(K_{n,n}) by showing that va1,1(Kn,n)=O(n)va^{\equiv}_{1,1}(K_{n,n})=O(n) and va^{\equiv}_{k,\infty}(K_{n,n})=O(n^{\1/2}) for every k2k\geq 2. It is also proved that va,(G)3va^{\equiv}_{\infty,\infty}(G)\leq 3 for every planar graph GG with girth at least 5 and va,(G)2va^{\equiv}_{\infty,\infty}(G)\leq 2 for every planar graph GG with girth at least 6 and for every outerplanar graph. We conjecture that va,(G)=O(1)va^{\equiv}_{\infty,\infty}(G)=O(1) for every planar graph and va,(G)Δ(G)+12va^{\equiv}_{\infty,\infty}(G)\leq \lceil\frac{\Delta(G)+1}{2}\rceil for every graph GG

    Some Extensions to Touchard's Theorem on Odd Perfect Numbers

    Full text link
    The multiplicative structure of an odd perfect number nn, if any, is n=παM2n=\pi^\alpha M^2, where π\pi is prime, gcd(π,M)=1\gcd(\pi,M)=1 and πα1(mod4)\pi\equiv \alpha\equiv1\pmod{4}. An additive structure of nn, established by Touchard, is that "(n9(mod36))\bigl(n\equiv 9\pmod{36}\bigr ) OR (n1(mod12))\bigl (n\equiv1\pmod{12}\bigr )". A first extension of Touchard's result is that the proposition "(nx2(mod4x2))\bigl(n\equiv x^2\pmod{4 x^2}\bigr ) OR (nπ1(mod4x))\bigl (n\equiv \pi\equiv1\pmod{4 x}\bigr )" holds for x=3x=3 (the extension is due to the fact that the second congruence contains also π\pi). We further extend the proof to x=α+2x=\alpha+2, α+2\alpha+2 prime, with the restriction that the congruence modulo 4x4 x does not include nn. Besides, we note that the first extension of Touchard's result holds also with an exclusive disjunction, so that π1(mod12)\pi\equiv 1\pmod{12} is a sufficient condition because 3n3\nmid n.Comment: 5 page

    On the equation x2Dy2=nx^2-Dy^2=n

    Full text link
    We propose a method to determine the solvability of the diophantine equation x2Dy2=nx^2-Dy^2=n for the following two cases: (1)(1) D=pqD=pq, where p,q1mod4p,q\equiv 1 \mod 4 are distinct primes with (qp)=1(\frac{q}{p})=1 and (pq)4(qp)4=1(\frac{p}{q})_4(\frac{q}{p})_4=-1. (2)(2) D=2p1p2...pmD=2p_1p_2... p_m, where pi1mod8,1imp_i\equiv 1 \mod 8,1\leq i\leq m are distinct primes and D=r2+s2D=r^2+s^2 with r,s±3mod8r,s \equiv \pm 3 \mod 8.Comment: 19p

    New Explicit Lorentzian Einstein-Weyl Structures in 3-Dimensions

    Full text link
    On a 33D manifold, a Weyl geometry consists of pairs (g,A)=(g, A) = (metric, 11-form) modulo gauge g^=e2φg\widehat{g} = {\rm e}^{2\varphi} g, A^=A+dφ\widehat{A} = A + {\rm d}\varphi. In 1943, Cartan showed that every solution to the Einstein-Weyl equations R(μν)13Rgμν=0R_{(\mu\nu)} - \frac{1}{3} R g_{\mu\nu} = 0 comes from an appropriate 33D leaf space quotient of a 77D connection bundle associated with a 3rd^{\rm rd} order ODE y=H(x,y,y,y)y''' = H(x,y,y',y'') modulo point transformations, provided 22 among 33 primary point invariants vanish Wu¨nschmann(H)0Cartan(H). \text{W\"unschmann}(H) \equiv 0\equiv \text{Cartan}(H). We find that point equivalence of a single PDE zy=F(x,y,z,zx)z_y = F(x,y,z,z_x) with para-CR integrability DF:=Fx+zxFz0DF := F_x + z_x F_z \equiv 0 leads to a completely similar 77D Cartan bundle and connection. Then magically, the (complicated) equation Wu¨nschmann(H)0\text{W\"unschmann}(H) \equiv 0 becomes 0Monge(F):=9Fpp2Fppppp45FppFpppFpppp+40Fppp3,p:=zx,0\equiv\text{Monge}(F):=9F_{pp}^2F_{ppppp}-45F_{pp}F_{ppp}F_{pppp}+40F_{ppp}^3,\qquad p:=z_x, whose solutions are just conics in the {p,F}\{p, F\}-plane. As an ansatz, we take F(x,y,z,p):=α(y)(zxp)2+β(y)(zxp)p+γ(y)(zxp)+δ(y)p2+ε(y)p+ζ(y)λ(y)(zxp)+μ(y)p+ν(y),F(x,y,z,p):= \frac{\alpha(y)(z-xp)^2+\beta(y)(z-xp)p+\gamma(y)(z-xp) +\delta(y)p^2+\varepsilon(y)p+\zeta(y)}{\lambda(y)(z-xp)+\mu(y) p+\nu(y)}, with 99 arbitrary functions α,,ν\alpha, \dots, \nu of yy. This FF satisfies DF0Monge(F)DF \equiv 0 \equiv \text{Monge}(F), and we show that the condition Cartan(H)0\text{Cartan}(H) \equiv 0 passes to a certain K(F)0\boldsymbol{K}(F) \equiv 0 which holds for any choice of α(y),,ν(y)\alpha(y), \dots, \nu(y). Descending to the leaf space quotient, we gain \infty-dimensional functionally parametrized and explicit families of Einstein-Weyl structures [(g,A)]\big[ (g, A) \big] in 33D. These structures are nontrivial in the sense that dA≢0{\rm d}A \not\equiv 0 and Cotton([g])≢0\text{Cotton}([g]) \not \equiv 0

    Ramanujan-type Congruences for Overpartitions Modulo 16

    Full text link
    Let p(n)\overline{p}(n) denote the number of overpartitions of nn. Recently, Fortin-Jacob-Mathieu and Hirschhorn-Sellers independently obtained 2-, 3- and 4-dissections of the generating function for p(n)\overline{p}(n) and derived a number of congruences for p(n)\overline{p}(n) modulo 44, 88 and 6464 including p(5n+2)0(mod4)\overline{p}(5n+2)\equiv 0 \pmod{4}, p(4n+3)0(mod8)\overline{p}(4n+3)\equiv 0 \pmod{8} and p(8n+7)0(mod64)\overline{p}(8n+7)\equiv 0 \pmod{64}. By employing dissection techniques, Yao and Xia obtained congruences for p(n)\overline{p}(n) modulo 8,168, 16 and 3232, such as p(48n+26)0(mod8)\overline{p}(48n+26) \equiv 0 \pmod{8}, p(24n+17)0(mod16)\overline{p}(24n+17)\equiv 0 \pmod{16} and p(72n+69)0(mod32)\overline{p}(72n+69)\equiv 0 \pmod{32}. In this paper, we give a 16-dissection of the generating function for p(n)\overline{p}(n) modulo 16 and we show that p(16n+14)0(mod16)\overline{p}(16n+14)\equiv0\pmod{16} for n0n\ge 0. Moreover, by using the 22-adic expansion of the generating function of p(n)\overline{p}(n) due to Mahlburg, we obtain that p(2n+r)0(mod16)\overline{p}(\ell^2n+r\ell)\equiv0\pmod{16}, where n0n\ge 0, 1(mod8)\ell \equiv -1\pmod{8} is an odd prime and rr is a positive integer with r\ell \nmid r. In particular, for =7\ell=7, we get p(49n+7)0(mod16)\overline{p}(49n+7)\equiv0\pmod{16} and p(49n+14)0(mod16)\overline{p}(49n+14)\equiv0\pmod{16} for n0n\geq 0. We also find four congruence relations: p(4n)(1)np(n)(mod16)\overline{p}(4n)\equiv(-1)^n\overline{p}(n) \pmod{16} for n0n\ge 0, p(4n)(1)np(n)(mod32)\overline{p}(4n)\equiv(-1)^n\overline{p}(n)\pmod{32} for nn being not a square of an odd positive integer, p(4n)(1)np(n)(mod64)\overline{p}(4n)\equiv(-1)^n\overline{p}(n)\pmod{64} for n≢1,2,5(mod8)n\not\equiv 1,2,5\pmod{8} and p(4n)(1)np(n)(mod128)\overline{p}(4n)\equiv(-1)^n\overline{p}(n)\pmod{128} for n0(mod4)n\equiv 0\pmod{4}.Comment: 12 page

    Long Cycles in 1-tough Graphs

    Full text link
    In 1952, Dirac proved that every 2-connected graph with minimum degree δ\delta either is hamiltonian or contains a cycle of length at least 2δ2\delta. In 1986, Bauer and Schmeichel enlarged the bound 2δ2\delta to 2δ+22\delta+2 under additional 1-tough condition - an alternative and more natural necessary condition for a graph to be hamiltonian. In fact, the bound 2δ+22\delta+2 is sharp for a graph on nn vertices when n1(mod 3)n\equiv 1(mod\ 3). In this paper we present the final version of this result which is sharp for each nn: every 1-tough graph either is hamiltonian or contains a cycle of length at least 2δ+22\delta+2 when n1(mod 3)n\equiv 1(mod\ 3), at least 2δ+32\delta+3 when n2(mod 3)n\equiv 2(mod\ 3) or n1(mod 4)n\equiv 1(mod\ 4), and at least 2δ+42\delta+4 otherwise.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1204.651

    A simple polynomial for a simple transposition

    Full text link
    In this note, we review some facts about polynomials representing functions modulo primes p. In addition we prove that the polynomial f(x) = x^{p-2} + x^{p-3} + ... + x^3 + x^2 + 2x + 1 represents the transposition (0 1) modulo p, that is, f(0) \equiv 1 (mod p), f(1) \equiv 0 (mod p), and f(a) \equiv a (mod p) for all 2 \le a \le p-1.Comment: 4 page

    Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum

    Full text link
    The numbers RnR_n and WnW_n are defined as \begin{align*} R_n=\sum_{k=0}^{n}{n+k\choose 2k}{2k\choose k}\frac{1}{2k-1},\ \text{and}\ W_n=\sum_{k=0}^{n}{n+k\choose 2k}{2k\choose k}\frac{3}{2k-3}. \end{align*} We prove that, for any positive integer nn and odd prime pp, there hold \begin{align*} \sum_{k=0}^{n-1}(2k+1)R_k^2 &\equiv 0 \pmod{n}, \\ \sum_{k=0}^{p-1}(2k+1)R_k^2 &\equiv 4p(-1)^{\frac{p-1}{2}} -p^2 \pmod{p^3}, \\ 9\sum_{k=0}^{n-1}(2k+1)W_k^2 &\equiv 0 \pmod{n}, \\ \sum_{k=0}^{p-1}(2k+1)W_k^2 &\equiv 12p(-1)^{\frac{p-1}{2}}-17p^2 \pmod{p^3}, \quad\text{if p>3p>3.} \end{align*} The first two congruences were originally conjectured by Z.-W. Sun. Our proof is based on the multi-variable Zeilberger algorithm and the following observation: (2nn)(nk)(mk)(kmn)0(mod(2kk)(2m2kmk)), {2n\choose n}{n\choose k}{m\choose k}{k\choose m-n}\equiv 0\pmod{{2k\choose k}{2m-2k\choose m-k}}, where 0knm2n0\leqslant k\leqslant n\leqslant m \leqslant 2n.Comment: 18 page
    corecore