17,185 research outputs found

    3D Object Class Detection in the Wild

    Full text link
    Object class detection has been a synonym for 2D bounding box localization for the longest time, fueled by the success of powerful statistical learning techniques, combined with robust image representations. Only recently, there has been a growing interest in revisiting the promise of computer vision from the early days: to precisely delineate the contents of a visual scene, object by object, in 3D. In this paper, we draw from recent advances in object detection and 2D-3D object lifting in order to design an object class detector that is particularly tailored towards 3D object class detection. Our 3D object class detection method consists of several stages gradually enriching the object detection output with object viewpoint, keypoints and 3D shape estimates. Following careful design, in each stage it constantly improves the performance and achieves state-ofthe-art performance in simultaneous 2D bounding box and viewpoint estimation on the challenging Pascal3D+ dataset

    Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor

    Get PDF
    We investigate video classification via a two-stream convolutional neural network (CNN) design that directly ingests information extracted from compressed video bitstreams. Our approach begins with the observation that all modern video codecs divide the input frames into macroblocks (MBs). We demonstrate that selective access to MB motion vector (MV) information within compressed video bitstreams can also provide for selective, motion-adaptive, MB pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation of spatio-temporal video activity regions at extremely high speed in comparison to conventional full-frame decoding followed by optical flow estimation. In order to evaluate the accuracy of a video classification framework based on such activity data, we independently train two CNN architectures on MB texture and MV correspondences and then fuse their scores to derive the final classification of each test video. Evaluation on two standard datasets shows that the proposed approach is competitive to the best two-stream video classification approaches found in the literature. At the same time: (i) a CPU-based realization of our MV extraction is over 977 times faster than GPU-based optical flow methods; (ii) selective decoding is up to 12 times faster than full-frame decoding; (iii) our proposed spatial and temporal CNNs perform inference at 5 to 49 times lower cloud computing cost than the fastest methods from the literature.Comment: Accepted in IEEE Transactions on Circuits and Systems for Video Technology. Extension of ICIP 2017 conference pape

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional Neural Networks

    Get PDF
    Advanced video classification systems decode video frames to derive the necessary texture and motion representations for ingestion and analysis by spatio-temporal deep convolutional neural networks (CNNs). However, when considering visual Internet-of-Things applications, surveillance systems and semantic crawlers of large video repositories, the video capture and the CNN-based semantic analysis parts do not tend to be co-located. This necessitates the transport of compressed video over networks and incurs significant overhead in bandwidth and energy consumption, thereby significantly undermining the deployment potential of such systems. In this paper, we investigate the trade-off between the encoding bitrate and the achievable accuracy of CNN-based video classification models that directly ingest AVC/H.264 and HEVC encoded videos. Instead of retaining entire compressed video bitstreams and applying complex optical flow calculations prior to CNN processing, we only retain motion vector and select texture information at significantly-reduced bitrates and apply no additional processing prior to CNN ingestion. Based on three CNN architectures and two action recognition datasets, we achieve 11%-94% saving in bitrate with marginal effect on classification accuracy. A model-based selection between multiple CNNs increases these savings further, to the point where, if up to 7% loss of accuracy can be tolerated, video classification can take place with as little as 3 kbps for the transport of the required compressed video information to the system implementing the CNN models

    A convolutional neural network based deep learning methodology for recognition of partial discharge patterns from high voltage cables

    Get PDF
    It is a great challenge to differentiate partial discharge (PD) induced by different types of insulation defects in high-voltage cables. Some types of PD signals have very similar characteristics and are specifically difficult to differentiate, even for the most experienced specialists. To overcome the challenge, a convolutional neural network (CNN)-based deep learning methodology for PD pattern recognition is presented in this paper. First, PD testing for five types of artificial defects in ethylene-propylene-rubber cables is carried out in high voltage laboratory to generate signals containing PD data. Second, 3500 sets of PD transient pulses are extracted, and then 33 kinds of PD features are established. The third stage applies a CNN to the data; typical CNN architecture and the key factors which affect the CNN-based pattern recognition accuracy are described. Factors discussed include the number of the network layers, convolutional kernel size, activation function, and pooling method. This paper presents a flowchart of the CNN-based PD pattern recognition method and an evaluation with 3500 sets of PD samples. Finally, the CNN-based pattern recognition results are shown and the proposed method is compared with two more traditional analysis methods, i.e., support vector machine (SVM) and back propagation neural network (BPNN). The results show that the proposed CNN method has higher pattern recognition accuracy than SVM and BPNN, and that the novel method is especially effective for PD type recognition in cases of signals of high similarity, which is applicable for industrial applications

    Multi-Frame Quality Enhancement for Compressed Video

    Full text link
    The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, ignoring the similarity between consecutive frames. In this paper, we investigate that heavy quality fluctuation exists across compressed video frames, and thus low quality frames can be enhanced using the neighboring high quality frames, seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we firstly develop a Support Vector Machine (SVM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are as the input. The MF-CNN compensates motion between the non-PQF and PQFs through the Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help of its nearest PQFs. Finally, the experiments validate the effectiveness and generality of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/ryangBUAA/MFQE.gitComment: to appear in CVPR 201
    • …
    corecore