2,777,358 research outputs found

    Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO

    Get PDF
    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19^{19}F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19^{19}F of 65 g and 69 g respectively and a total exposure of 13.75 ±\pm 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2^2 new limits have been obtained on the spin-dependent cross section on 19^{19}F of σF\sigma_F = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp\sigma_p = 0.16 pb and σn\sigma_n = 2.60 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages, 7 figure

    Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    Get PDF
    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal

    Observation of force-detected nuclear magnetic resonance in a homogeneous field

    Get PDF
    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present H-1 and F-19 NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a H-1-F-19 J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to µm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the µm and nm scales

    Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

    Get PDF
    PURPOSE: To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. MATERIALS AND METHODS: The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. RESULTS: (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. CONCLUSION: (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of vulnerable atherosclerosis and the elucidation of inflammation mechanisms in atherosclerosis

    Fluorine-19 magnetic resonance angiography of the mouse.

    Get PDF
    PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+ee^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+effˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    Performance degradation due to multipath noise for narrowband OFDM systems: channel-based analysis and experimental determination

    Get PDF
    The performance of OFDM systems over a multipath channel can strongly degrade due to the propagation delay spread. The distortion of the received signal over the fast Fourier transform window is referred to as multipath noise. This work aims to analytically determine the performance loss due to multipath noise as a function of OFDM and channel parameters for narrowband OFDM systems. First, it is investigated whether it is possible to describe the multipath noise, varying over different OFDM packets due to the temporal variation of the channel, by an effective noise factor F-delay, from which the loss factor is directly determined. Second, the theory of room electromagnetics is applied to develop a closed-form expression for F-delay as a function of the OFDM and reverberation parameters. This analytical method is validated with excellent agreement. Finally, the loss factor is determined for IEEE 802.11 based on channel measurements in two large conference rooms, providing values up to 19 dB for an 800 ns cyclic prefix length
    corecore