199,181 research outputs found
Observation of force-detected nuclear magnetic resonance in a homogeneous field
We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present H-1 and F-19 NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a H-1-F-19 J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to µm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the µm and nm scales
Detection of Metabolites by Proton Ex Vivo NMR, in Vivo MR Spectroscopy Peaks and Tissue Content Analysis: Biochemical-Magnetic Resonance Correlation: Preliminary Results
*Aim*: Metabolite concentrations by in vivo magnetic resonance spectroscopy and ex vivo NMR spectroscopy were compared with excised normal human tissue relaxation times and tissue homogenate contents.

*Hypothesis*: Biochemical analysis combined with NMR and MR spectroscopy defines better tissue analysis.

*Materials and Methods*: Metabolites were measured using peak area, amplitude and molecular weights of metabolites in the reference solutions. In normal brain and heart autopsy, muscle and liver biopsy tissue ex vivo NMR peaks and spin-lattice (T1) and spin-spin (T2) relaxation times, were compared with diseased tissue NMR data in meningioma brain, myocardial infarct heart, duchene-muscular-dystrophy muscle and diffused-liver-injury liver after respective in vivo proton MR spectroscopy was done. NMR data was compared with tissue homogenate contents and serum levels of biochemical parameters.

*Results*: The quantitation of smaller NMR visible metabolites was feasible for both ex vivo NMR and in vivo MR spectroscopy. Ex vivo H-1 NMR and in vivo MRS metabolite characteristic peaks (disease/normal data represented as fold change), T1 and T2, and metabolites in tissue homogenate and serum indicated muscle fibrosis in DMD, cardiac energy depletion in MI heart, neuronal dysfunction in meningioma brain and carbohydrate-lipid metabolic crisis in DLI liver tissues.

*Conclusion*: This preliminary report highlights the biochemical-magnetic resonance correlation as basis of magnetic resonance spectroscopic imaging data interpretation of disease
ABA triblock copolymers: from controlled synthesis to controlled function
The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated
(dme)MCl_3(NNPh_2) (dme= dimethoxyethane; M= Nb, Ta): A Versatile Synthon for [Ta═NNPh_2] Hydrazido(2-) Complexes
Complexes (dme)TaCl_3(NNPh_2) (1) and (dme)NbCl_3(NNPh_2) (2) (dme =1,2-dimethoxyethane) were synthesized from MCl5 and diphenylhydrazine via a Lewis-acid assisted dehydrohalogenation reaction. Monomeric 1 has been characterized by X-ray, IR, UV−vis, ^(1)H NMR, and ^(13)C NMR spectroscopy and contains a κ^(1)-bound hydrazido(2-) moiety. Unlike the corresponding imido derivatives, 1 is dark blue because of an LMCT that has been lowered in energy as a result of an N_(α)−N_(β) antibonding interaction that raises the highest occupied molecular orbital (HOMO). Reaction of 1 with a variety of neutral, mono- and dianionic ligands generates the corresponding ligated complexes retaining the κ^(1)-bound [Ta−NNPh_2] moiety
Nitrogen-Rich Oxetanes Based on the Combination of Azides and Tetrazoles
Literature known energetic oxetane derivatives have a nitrogen content of up to 49.98 %. Through the introduction of azide and tetrazole functionalities attached to an oxetane ring, energetic oxetanes with higher nitrogen contents than previously reported in the literature were obtained. The newly synthesized oxetane derivatives were extensively characterized via H-1 NMR, C-13{H-1} NMR, N-14 NMR, N-15 NMR, H-1-N-15 HMBC, FT-IR spectroscopy and/or DTA. Their crystal structures were elucidated using X-ray diffraction, their sensitivities towards impact, friction and electrostatic discharge were determined and their energetic properties were calculated using the EXPLO5 code
MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids
<p>Abstract</p> <p>Background</p> <p>One-dimensional (1D) <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy is widely used in metabolomic studies involving biofluids and tissue extracts. There are several software packages that support compound identification and quantification via 1D <sup>1</sup>H NMR by spectral fitting techniques. Because 1D <sup>1</sup>H NMR spectra are characterized by extensive peak overlap or spectral congestion, two-dimensional (2D) NMR, with its increased spectral resolution, could potentially improve and even automate compound identification or quantification. However, the lack of dedicated software for this purpose significantly restricts the application of 2D NMR methods to most metabolomic studies.</p> <p>Results</p> <p>We describe a standalone graphics software tool, called MetaboMiner, which can be used to automatically or semi-automatically identify metabolites in complex biofluids from 2D NMR spectra. MetaboMiner is able to handle both <sup>1</sup>H-<sup>1</sup>H total correlation spectroscopy (TOCSY) and <sup>1</sup>H-<sup>13</sup>C heteronuclear single quantum correlation (HSQC) data. It identifies compounds by comparing 2D spectral patterns in the NMR spectrum of the biofluid mixture with specially constructed libraries containing reference spectra of ~500 pure compounds. Tests using a variety of synthetic and real spectra of compound mixtures showed that MetaboMiner is able to identify >80% of detectable metabolites from good quality NMR spectra.</p> <p>Conclusion</p> <p>MetaboMiner is a freely available, easy-to-use, NMR-based metabolomics tool that facilitates automatic peak processing, rapid compound identification, and facile spectrum annotation from either 2D TOCSY or HSQC spectra. Using comprehensive reference libraries coupled with robust algorithms for peak matching and compound identification, the program greatly simplifies the process of metabolite identification in complex 2D NMR spectra.</p
CHARACTERIZATION OF EGCG COMPOUND USE H NMR SPECTRUM ON CAMELLIA SINENSIS (L.) CALLUS
Epigallocatechin gallate (EGCG) are secondary metabolite on Camellia
sinensis L as obesity preventing agent. The characterisation of this plant use
1
H
NMR spectroscopy often have been done, however characterisation on callus both
drying with open air and without drying is rare. The purpose of this research is
characterize EGCG of tea callus via process both drying with open air and vacuum.
Tis method use
1
H NMR spectroscopy. The result show that EGCG character of tea
callus via process both drying with open air and vacuum are significantly differen
Sn(IV)-corroles reversibly bind carboxylates in the axial position
We present the synthesis of Sn(IV)-corrole complexes that bind to carboxylate moieties reversibly, via axial ligation. The systems have been predominantly characterized using H-1 NMR spectroscopy, X-ray crystallography, and MALDI mass spectrometry. The dynamic nature of the Sn(IV)-O2CR bond has been studied in solution using 2D-NMR spectroscopy
DARSTELLUNG UND NMR-SPEKTROSKOPISCHE UNTERSUCHUNGEN VON N,N'-DIPHENYL-CYCLODISILAZANEN
Several N,N'-diphenylcyclodisilazanes substituted by methyl and phenyl groups at the
silicon atoms were synthesized by pyrolysis or via the appropriate Iithium-organic compounds.
The structures were corroborated by 1 H-, 13C_ and 29Si-NMR spectroscopy. The assignments of
the 13C_ NMR spectra were completed and the effect of the change of the substituents on the
silyl-methyl 1 H-NMR chemical shifts as weil as on the 29Si chemical shifts was investigated
The Synthesis and Characterization of New, Robust Titanium (IV) Scorpionate Complexes
Titanium complexes possessing sterically encumbered ligands have allowed for the preparation of reactive moieties (imido, alkylidene and alkylidyne species) relevant to reactions such as olefin polymerization and alkyne hydroamination. For this reason, we have targeted robust scorpionate ancillary ligands to support reactive titanium centers. Thus, a series of titanium complexes were synthesized using an achiral oxazoline-based scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate [To^M^]^-^ as well as the related chiral ligand, tris(4-isopropyl-2-oxazolinyl)phenyl borate [To^P^]^-^. The complex [Ti(κ^3^- To^M^)Cl~3~] was prepared in moderate yield (43%) by the rapid (<1 min at room temperature) reaction of Li[To^M^] and TiCl~4~ in methylene chloride; this new compound was characterized by ^1^H NMR spectroscopy as the expected C~3v~-symmetric species. One route to Ti (IV) alkyls involves salt metathesis; accordingly, syntheses of [To^M^]Ti alkyl complexes by interaction of [Ti(κ^3^-To^M^)Cl~3~] and one or three equivalents of alkylating agents, such as benzyl potassium (KCH~2~C~6~H~5~), trimethylsilylmethyl
lithium (LiCH~2~Si(CH~3~) ~3~), or neopentyl lithium (LiCH~2~C(CH~3~)~3~) are currently under investigation. The complexes [Ti(=NBut) (κ~3~-To^M^)(Cl)(Bu^t^py)] (Bu^t^py=4 tert-butylpyridine) and [Ti(=NBu^t^) (κ~3~-To^P^)(Cl)(Bu^t^py)] were synthesized by reaction of the known Ti imido [Ti(=NBu^t^)(Cl)~2~(Bu^t^py)~2~] with Li[To^M^] or Li[To^P^], respectively, by stirring overnight in methylene chloride at ambient temperature. The complexes were identified using ^1^H NMR spectroscopy, ^1^H-^13^C HMQC and ^1^H-^15^N HMBC correlation experiments
- …