2,678,839 research outputs found
NuSTAR Observations of G11.2â0.3
We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2â0.3 and its central pulsar powered pulsar J1811â1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Î = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Î = 1.32 ± 0.07 up to 300 keV without evidence of curvature
Lyman Alpha Emitter Evolution in the Reionization Epoch
Combining cosmological SPH simulations with a previously developed Lyman
Alpha production/transmission model and the Early Reionization Model (ERM,
reionization ends at redshift z~7), we obtain Lyman Alpha and UV Luminosity
Functions (LFs) for Lyman Alpha Emitters (LAEs) for redshifts between 5.7 and
7.6. Matching model results to observations at z~5.7 requires escape fractions
of Lyman Alpha, f_alpha=0.3, and UV (non-ionizing) continuum photons, f_c=0.22,
corresponding to a color excess, E(B-V)=0.15. We find that (i) f_c increases
towards higher redshifts, due the decreasing mean dust content of galaxies,
(ii) the evolution of f_alpha/f_c hints at the dust content of the ISM becoming
progressively inhomogeneous/clumped with decreasing redshift. The clustering
photoionization boost is important during the initial reionization phases but
has little effect on the Lyman Alpha LF for a highly ionized IGM. Halo
(stellar) masses are in the range 10.0 < \log M_h < 11.8 (8.1 < \log M_* <
10.4) with M_h \propto M_*^{0.64}. The star formation rates are between 3-120
solar masses per year, mass-weighted mean ages are greater than 20 Myr at all
redshifts, while the mean stellar metallicity increases from Z=0.12 to 0.22
solar metallicity from z~7.6 to z~5.7; both age and metallicity positively
correlate with stellar mass. The brightest LAEs are all characterized by large
star formation rates and intermediate ages (~200 Myr), while objects in the
faint end of the Lyman Alpha LF show large age and star formation rate spreads.
With no more free parameters, the Spectral Energy Distributions of three LAE at
z~5.7 observed by Lai et al. (2007) are well reproduced by an intermediate age
(182-220 Myr) stellar population and the above E(B-V) value.Comment: 13 pages, 9 figures, accepted to MNRA
Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field
We measure nebular oxygen abundances for 204 emission-line galaxies with
redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North
(GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We
also provide an updated analytic prescription for estimating oxygen abundances
using the traditional strong emission line ratio, R_{23}, based on the
photoionization models of Kewley & Dopita (2003). We include an analytic
formula for very crude metallicity estimates using the [NII]6584/Halpha ratio.
Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1
corresponding to metallicities between 0.3 and 2.5 times the solar value. This
sample of galaxies exhibits a correlation between rest-frame blue luminosity
and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z
correlations of previously-studied intermediate-redshift samples. The zero
point of the L-Z relation evolves with redshift in the sense that galaxies of a
given luminosity become more metal poor at higher redshift. Galaxies in
luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance
by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that
28\pm0.07% of metals in local galaxies have been synthesized since z=1, in
reasonable agreement with the predictions based on published star formation
rate densities which show that ~38% of stars in the universe have formed during
the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The
Astrophysical Journa
Ultraluminous X-ray sources out to z~0.3 in the COSMOS field
Using Chandra observations we have identified a sample of seven off-nuclear
X-ray sources, in the redshift range z=0.072-0.283, located within optically
bright galaxies in the COSMOS Survey. Using the multi-wavelength coverage
available in the COSMOS field, we study the properties of the host galaxies of
these ULXs. In detail, we derived their star formation rate from H_alpha
measurements and their stellar masses using SED fitting techniques with the aim
to compute the probability to have an off-nuclear source based on the host
galaxy properties. We divide the host galaxies in different morphological
classes using the available ACS/HST imaging. We find that our ULXs candidates
are located in regions of the SFR versus M plane where one or more
off-nuclear detectable sources are expected. From a morphological analysis of
the ACS imaging and the use of rest-frame colours, we find that our ULXs are
hosted both in late and early type galaxies. Finally, we find that the fraction
of galaxies hosting a ULX ranges from ~0.5% to ~0.2% going from L[0.5-2 keV]=3
x 10^39 erg s^-1 to L[0.5-2 keV]= 2 x 10^40 erg s^-1.Comment: 10 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Oxygen phonon branches in overdoped LaSrCuO
The dispersion of the Cu-O bond-stretching vibrations in overdoped
LaSrCuO (not superconducting) has been studied by high
resolution inelastic neutron scattering. It was found that the doping-induced
renormalization of the so-called breathing and the half-breathing modes is
larger than in optimally doped LaSrCuO. On the other
hand, the phonon linewidths are generally smaller in the overdoped sample.
Features observed in optimally doped LaSrCuO which
suggest a tendency towards charge stripe formation are absent in overdoped
LaSrCuO.Comment: 6 pages, 8 figure
The Evolution of the Galaxy Cluster Luminosity-Temperature Relation
We analyzed the luminosity-temperature (L-T) relation for 2 samples of galaxy
clusters which have all been observed by the ASCA satellite. We used 32 high
redshift clusters (0.3<z<0.6), 53 low redshift clusters (z<0.3), and also the
combination of the low and high redshift datasets. We assumed a power law
relation between the bolometric luminosity of the galaxy cluster and its
integrated temperature and redshift (L_{bol,44}=C*T^alpha*(1+z)^A). The results
are consistent, independent of cosmology, with previous estimates of
LT found by other authors. We observed weak or zero evolution.Comment: 20 pages, Latex, 11 figures, GIF forma
On the Mass-to-Light Ratio of Large Scale Structure
We examine the dependence of the mass-to-light (M/L) ratio of large-scale
structure on cosmological parameters, in models that are constrained to match
observations of the projected galaxy correlation function w(rp). For a sequence
of cosmological models with a fixed P(k) shape and increasing normalization
\sig8, we find parameters of the galaxy halo occupation distribution (HOD) that
reproduce SDSS measurements of w(rp) as a function of luminosity. Using these
HOD models we calculate mean M/L ratios as a function of halo mass and populate
halos of N-body simulations to compute M/L in larger scale environments,
including cluster infall regions. For all cosmological models, the M/L ratio in
high mass halos or high density regions is approximately independent of halo
mass or smoothing scale. However, the "plateau" value of M/L depends on \sig8
as well as \Omega_m, and it represents the universal mass-to-light ratio
only for models in which the galaxy correlation function is approximately
unbiased, i.e., with \sig8 ~ \sig8_gal. Our results for cluster mass halos
follow the trend M/L = 577(\Omega_m/0.3)(\sig8/0.9)^{1.7} h Msun/Lsun. Combined
with Carlberg et al.'s (1996) mean M/L ratio of CNOC galaxy clusters, this
relation implies (\sig8/0.9)(\Omega_m/0.3)^{0.6} = 0.75 +/- 0.06. M/L ratios of
clusters from the SDSS and CAIRNS surveys yield similar results. This
constraint is inconsistent with parameter values \Omega_m ~ 0.3, \sig8 ~ 0.9
favored by recent joint analyses of CMB measurements and other large-scale
structure data. We discuss possible resolutions, none of which seems entirely
satisfactory. Appendices present an improved formula for halo bias factors and
an improved analytic technique for calculating the galaxy correlation function
from a given cosmological model and HOD. (Abridged)Comment: Accepted to ApJ (v 630, no 2). Replaced with accepted versio
The EGNoG Survey: Gas Excitation in Normal Galaxies at z~0.3
As observations of molecular gas in galaxies are pushed to lower star
formation rate galaxies at higher redshifts, it is becoming increasingly
important to understand the conditions of the gas in these systems to properly
infer their molecular gas content. The rotational transitions of the carbon
monoxide (CO) molecule provide an excellent probe of the gas excitation
conditions in these galaxies. In this paper we present the results from the gas
excitation sample of the Evolution of molecular Gas in Normal Galaxies (EGNoG)
survey at the Combined Array for Research in Millimeter-wave Astronomy (CARMA).
This subset of the full EGNoG sample consists of four galaxies at z~0.3 with
star formation rates of 40-65 M_Sun yr^-1 and stellar masses of ~2x10^11 M_Sun.
Using the 3 mm and 1 mm bands at CARMA, we observe both the CO(1-0) and CO(3-2)
transitions in these four galaxies in order to probe the excitation of the
molecular gas. We report robust detections of both lines in three galaxies (and
an upper limit on the fourth), with an average line ratio, r_31 = L'_CO(3-2) /
L'_CO(1-0), of 0.46 \pm 0.07 (with systematic errors \lesssim 40%), which
implies sub-thermal excitation of the CO(3-2) line. We conclude that the
excitation of the gas in these massive, highly star-forming galaxies is
consistent with normal star-forming galaxies such as local spirals, not
starbursting systems like local ultra-luminous infrared galaxies. Since the
EGNoG gas excitation sample galaxies are selected from the main sequence of
star-forming galaxies, we suggest that this result is applicable to studies of
main sequence galaxies at intermediate and high redshifts, supporting the
assumptions made in studies that find molecular gas fractions in star forming
galaxies at z~1-2 to be an order of magnitude larger than what is observed
locally.Comment: Accepted for publication in the Astrophysical Journal, to appear
January 2013; 18 pages, 10 figures, 6 table
- âŠ