Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Stress-Immune-Growth Interactions: Cortisol Modulates Suppressors of Cytokine Signaling and JAK/STAT Pathway in Rainbow Trout Liver.

Abstract

Chronic stress is a major factor in the poor growth and immune performance of salmonids in aquaculture. However, the molecular mechanisms linking stress effects to growth and immune dysfunction is poorly understood. The suppressors of cytokine signaling (SOCS), a family of genes involved in the inhibition of JAK/STAT pathway, negatively regulates growth hormone and cytokine signaling, but their role in fish is unclear. Here we tested the hypothesis that cortisol modulation of SOCS gene expression is a key molecular mechanism leading to growth and immune suppression in response to stress in fish. Exposure of rainbow trout (Oncorhynchus mykiss) liver slices to cortisol, mimicking stress level, upregulated SOCS-1 and SOCS-2 mRNA abundance and this response was abolished by the glucocorticoid receptor antagonist mifepristone. Bioinformatics analysis confirmed the presence of putative glucocorticoid response elements in rainbow trout SOCS-1 and SOCS-2 promoters. Prior cortisol treatment suppressed acute growth hormone (GH)-stimulated IGF-1 mRNA abundance in trout liver and this involved a reduction in STAT5 phosphorylation and lower total JAK2 protein expression. Prior cortisol treatment also suppressed lipopolysaccharide (LPS)-induced IL-6 but not IL-8 transcript levels; the former but not the latter cytokine expression is via JAK/STAT phosphorylation. LPS treatment reduced GH signaling, but this was associated with the downregulation of GH receptors and not due to the upregulation of SOCS transcript levels by this endotoxin. Collectively, our results suggest that upregulation of SOCS-1 and SOCS-2 transcript levels by cortisol, and the associated reduction in JAK/STAT signaling pathway, may be a novel mechanism leading to growth reduction and immune suppression during stress in trout

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.