research

A parametric approach to the estimation of cointegration vectors in panel data

Abstract

In this paper a parametric framework for estimation and inference in cointegrated panel data models is considered that is based on a cointegrated VAR(p) model. A convenient two-step estimator is suggested where in the first step all individual specific parameters are estimated, whereas in the second step the long-run parameters are estimated from a pooled least-squares regression. The two-step estimator and related test procedures can easily be modified to account for contemporaneously correlated errors, a feature that is often encountered in multi-country studies. Monte Carlo simulations suggest that the two-step estimator and related test procedures outperform semiparametric alternatives such as the FM-OLS approach, especially if the number of time periods is small.

Similar works

Full text

thumbnail-image
Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.