Finding good predictors for inflation: a Bayesian model averaging approach

Abstract

We consider a Bayesian model averaging approach for the purpose of forecasting Swedish consumer price index inflation using a large set of potential indicators, comprising some 80 quarterly time series covering a wide spectrum of Swedish economic activity. The paper demonstrates how to efficiently and systematically evaluate (almost) all possible models that these indicators in combination can give rise to. The results, in terms of out-of-sample performance, suggest that Bayesian model averaging is a useful alternative to other forecasting procedures, in particular recognizing the flexibility by which new information can be incorporated. Copyright © 2004 John Wiley & Sons, Ltd.

Similar works

Full text

thumbnail-image

Research Papers in Economics

redirect
Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.