research article review

Nucleic acid-functionalized gold nanowires co-fabricated with millimeter-scale contact pads by oxygen plasma-assisted e-beam lithography for microchannel integrated biosensing applications

Abstract

Nucleic acid-based biosensor technologies are useful to precisely detect genetic footprints at low concentrations with high specificity and selectivity. They commonly rely on incorporating nucleic acid probes onto optical, electrochemical, or electrical transducers. Among various sensing modalities, approaches based on direct electrical measurements offer advantages in label-free detection, portability for point-of-care analysis, and direct integration with electronic readout circuits facilitating data processing, transfer and remote interpretation. In this work, we demonstrate a novel fabrication approach which couples conventional optical lithography and oxygen plasma-based etching with high-resolution electron-beam lithography to rapidly pattern poly(methyl methacrylate) (PMMA) e-beam resist at varying feature sizes (i.e. both large and small device areas), which would otherwise require extremely long exposure durations up to days with standalone e-beam lithography. This allows the fabrication of realistic biosensor chips in arrayed format, co-integrating millimeter (mm)-scale electrical peripherals and nanoscale (nm) sensing elements utilizing a simple and high-throughput process. The feasibility of the approach is demonstrated by successful immobilization of thiol-functionalized peptide nucleic acid (PNA) probes on ~ 60 nm-wide gold nanowires (AuNWs) integrated with a PDMS microchannel. Fabrication of biochips, integration with microfluidics and self-assembly of PNA probes are characterized by optical microscope imaging, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS)

Similar works

Full text

thumbnail-image

Sabanci University Research Database

redirect
Last time updated on 24/08/2025

This paper was published in Sabanci University Research Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.