Implementasi Gray Level Co-Occurrence Matrix (GLCM) untuk Mendeteksi Penyakit Daun pada Tanaman Holtikultura

Abstract

Abstract: Early detection of horticultural plant diseases is crucial for improving agricultural productivity. This study implements the Gray Level Co-Occurrence Matrix (GLCM) as a texture feature extraction method to detect leaf diseases in horticultural plants. The key texture features used include dissimilarity, contrast, energy, correlation, and homogeneity. The classification models applied are Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). The results show that the GLCM method with SVM achieved an accuracy of up to 71% on the corn leaf dataset, while the combination of GLCM and KNN with Euclidean distance achieved 79% accuracy on corn leaves. However, the model's accuracy decreased for the potato and tomato datasets, with the highest values reaching 43% and 30%, respectively, using the GLCM and SVM combination. For the tomato dataset, the combination of GLCM and KNN reached 30%, while for the potato dataset, it achieved an accuracy of 52%. Confusion matrix analysis indicates that the selection of the K parameter in KNN affects classification performance. These findings suggest that while GLCM is effective for texture feature extraction, further optimization is required, particularly in model parameter selection and dataset quality. This study provides valuable insights into the application of GLCM in image-based plant disease detection systems and highlights the potential for developing hybrid methods to enhance accuracy.Abstrak: Deteksi dini penyakit tanaman hortikultura sangat penting untuk meningkatkan produktivitas pertanian. Penelitian ini mengimplementasikan Gray Level Co-Occurrence Matrix (GLCM) sebagai metode ekstraksi fitur tekstur untuk mendeteksi penyakit daun pada tanaman hortikultura. Fitur tekstur utama yang digunakan meliputi dissimilarity, contrast, energy, correlation, dan homogeneity. Model klasifikasi yang digunakan adalah Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN). Hasil penelitian menunjukkan bahwa metode GLCM dengan SVM mencapai akurasi hingga 71% pada dataset daun jagung, sementara kombinasi GLCM dan KNN dengan jarak Euclidean menghasilkan akurasi 79% pada daun jagung. Namun, akurasi model menurun pada dataset kentang dan tomat, masing-masing dengan nilai tertinggi 43% dan 30% dengan kombinasi GLCM dan SVM. Untuk dataset tomat kombinasi GLCM dan KNN mencapai 30% dan pada dataset kentang mencapai akurasi 52%. Analisis confusion matrix menunjukkan bahwa pemilihan parameter K dalam KNN mempengaruhi performa klasifikasi. Hasil ini mengindikasikan bahwa meskipun GLCM efektif dalam ekstraksi fitur tekstur, optimalisasi lebih lanjut diperlukan, terutama dalam pemilihan parameter model dan kualitas dataset. Kajian ini memberikan wawasan penting mengenai penerapan GLCM dalam sistem deteksi penyakit tanaman berbasis citra serta potensi pengembangan metode hibrida untuk meningkatkan akurasi

Similar works

Full text

thumbnail-image

UMMAT Scientific Journals (Universitas Muhammadiyah Mataram)

redirect
Last time updated on 18/06/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by-sa/4.0