Bayesian Machine Learning Approach for Corn Yield Prediction Using Satellite Imagery and Topographic Data

Abstract

In an era of climate change and growing global food demand, accurate crop yield prediction is pivotal for leveraging advanced technologies to enhance crop management and sustainability. This study compares the prediction performance of several Bayesian Machine Learning method using high-resolution PlanetScope imagery and topographic data. In specific, the Bayesian Linear Regression, Bayesian Random Forest, Bayesian Splines, Bayesian Additive Regression Trees, and Bayesian Neural Network were developed to incorporate uncertainty quantification and achieve enhanced predictive accuracy. Our finding shows that the Bayesian Random Forest outperform the other model in term of crop yield prediction

Similar works

Full text

thumbnail-image

Public Research Access Institutional Repository and Information Exchange

redirect
Last time updated on 05/03/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.