We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.
LIPIcs - Leibniz International Proceedings in Informatics. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)
Doi
Abstract
We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+epsilon)-resistance sparsifier of size ~O(n/epsilon), and conjecture this bound holds for all graphs on n nodes. In comparison, spectral sparsification is a strictly stronger notion and requires Omega(n/epsilon^2) edges even on the complete graph.
Our approach leads to the following structural question on graphs: Does every dense regular expander contain a sparse regular expander as a subgraph? Our main technical contribution, which may of independent interest, is a positive answer to this question in a certain setting of parameters. Combining this with a recent result of von Luxburg, Radl, and Hein (JMLR, 2014) leads to the aforementioned resistance sparsifiers
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.