There are 50 billion pieces of litter in the U.S. alone. Grass fields contribute to this problem because picnickers tend to leave trash on the field. We propose building a robot that can autonomously navigate, identify, and pick up trash in parks. To autonomously navigate the park, we used a Spanning Tree Coverage (STC) algorithm to generate a coverage path the robot could follow. To navigate this path, we successfully used Real-Time Kinematic (RTK) GPS, which provides a centimeter-level reading every second. For computer vision, we utilized the ResNet50 Convolutional Neural Network (CNN), which detects trash with 94.52% accuracy. For trash pickup, we tested multiple design concepts. We select a new pickup mechanism that specifically targets the trash we encounter on the field. Our solution achieved an overall success rate of 80%, demonstrating that autonomous trash pickup robots on grass fields are a viable solution
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.