Observability of substructures in planet-forming disk in (sub)cm wavelength with SKA and ngVLA

Abstract

Current imaging observations of protoplanetary disks using ALMA primarily focus on the sub-millimeter wavelength, leaving a gap in effective observational approaches for centimeter-sized dust, which is crucial to the issue of planet formation. The forthcoming SKA and ngVLA may rectify this deficiency. In this paper, we employ multi-fluid hydrodynamic numerical simulations and radiative transfer calculations to investigate the potential of SKA1-Mid, ngVLA, and SKA2 for imaging protoplanetary disks at sub-cm/cm wavelengths. We create mock images with ALMA/SKA/ngVLA at multi-wavelengths based on the hydrodynamical simulation output, and test different sensitivity and spatial resolutions. We discover that both SKA and ngVLA will serve as excellent supplements to the existing observational range of ALMA, and their high resolution enables them to image substructures in the disk's inner region (∼\sim 5 au from the stellar). Our results indicate that SKA and ngVLA can be utilized for more extended monitoring programs in the centimeter waveband. While in the sub-centimeter range, ngVLA possesses the capability to produce high-fidelity images within shorter observation times (∼\sim 1 hour on source time) than previous research, holding potential for future survey observations. We also discuss for the first time the potential of SKA2 for observing protoplanetary disks at a 0.7 cm wavelength.Comment: 10 pages, 6 figures, accepted by ApJ. Welcome any comments and suggestions

Similar works

Full text

thumbnail-image

arXiv.org e-Print Archive

redirect
Last time updated on 12/10/2024

This paper was published in arXiv.org e-Print Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.