COARSE HOMOTOPY EXTENSION PROPERTY AND ITS APPLICATIONS

Abstract

A pair (X, A) has the homotopy extension property if any homotopy of A the extends overX × {0} can be extended to a homotopy of X. The main goal of this dissertation is to define a coarse analog of the homotopy extension property for coarse homotopies and prove coarse versions of results from algebraic topology involving this property. First, we define a notion of a coarse adjunction metric for constructing coarse adjunction spaces. We use this to redefine coarse CW complexes and to construct a coarse version of the mapping cylinder. We then prove various pairs of spaces have the coarse homotopy extension property. In particular, pairs of coarse CW complexes. We then prove results involving the coarse homotopy extension property, leading to the result that a coarse map f : X → Y is a coarse homotopy equivalence if and only if the coarse mapping cylinder coarse deformation retracts onto its copy of X. We use this to prove our main result, a coarse version of Whitehead’s Theorem: If a cellular coarse map f between coarse CW complexes induces isomorphisms between coarse homotopy groups, then f is a coarse homotopy equivalence

Similar works

This paper was published in University of Wisconsin-Milwaukee.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.