Active Information Gathering for Long-Horizon Navigation Under Uncertainty by Learning the Value of Information

Abstract

We address the task of long-horizon navigation in partially mapped environments for which active gathering of information about faraway unseen space is essential for good behavior. We present a novel planning strategy that, at training time, affords tractable computation of the value of information associated with revealing potentially informative regions of unseen space, data used to train a graph neural network to predict the goodness of temporally-extended exploratory actions. Our learning-augmented model-based planning approach predicts the expected value of information of revealing unseen space and is capable of using these predictions to actively seek information and so improve long-horizon navigation. Across two simulated office-like environments, our planner outperforms competitive learned and non-learned baseline navigation strategies, achieving improvements of up to 63.76% and 36.68%, demonstrating its capacity to actively seek performance-critical information.Comment: Submitted at IROS'24. arXiv admin note: text overlap with arXiv:2307.1450

Similar works

Full text

thumbnail-image

arXiv.org e-Print Archive

redirect
Last time updated on 25/09/2024

This paper was published in arXiv.org e-Print Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.