Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Profiling DNA Cargos in Single Extracellular Vesicles via Hydrogel-Based Droplet Digital Multiple Displacement Amplification

Abstract

Due to the substantial heterogeneity among extracellular vesicle (EV) subpopulations, single-EV analysis has the potential to elucidate the mechanisms behind EV biogenesis and shed light on the myriad functions, leading to the development of novel diagnostics and therapeutics. While many studies have been devoted to reveal between-EV variations in surface proteins and RNAs, DNA cargos (EV-DNA) have received little attention. Here, we report a hydrogel-based droplet digital multiple displacement amplification approach for the comprehensive analysis of EV-DNA at the single-EV level. Single EVs are dispersed in thousands of hydrogel droplets and lysed for DNA amplification and identification. The droplet microfluidics strategy empowers the assay with single-molecule sensitivity and capability for absolute quantification of DNA-containing EVs. In particular, our findings indicate that 5–40% EVs are associated with DNA, depending on the cell of origin. Large EVs exhibit a higher proportion of DNA-containing EVs and a more substantial presence of intraluminal DNA, compared to small EVs. These DNA-containing EVs carry multiple DNA fragments on average. Furthermore, both double-stranded DNA and single-stranded DNA were able to be detected at the single-EV level. Utilizing this method, the abundance, distribution, and biophysical properties of EV-DNA in various EV populations are evaluated. The DNA level within EVs provides insight into the status of the originating cells and offers valuable information on the outcomes of anticancer treatments. The utilization of single-EV analysis for EV-DNA holds significant promise for early cancer detection and treatment response monitoring

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 24/01/2024

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.