The formation of broad emission line regions in supernova-QSO wind interactions


We show that a cooled region of shocked supernova ejecta forms in a type II supernova-QSO wind interaction, and has a density, an ionization parameter, and a column density compatible with those inferred for the high ionization component of the broad emission line regions in QSOs. The calculations are based on the assumption that the ejecta flow is described initially by a similarity solution investigated by Chevalier (1982) and Nadyozhin (1985) and is spherically symmetric. Heating and cooling appropriate for gas irradiated by a nearby powerful continuum source is included in our model, together with reasonable assumptions for the properties of the QSO wind. The model results are also in agreement with observational correlations and imply reasonable supernova rates

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.