Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Nature-Inspired Surface Engineering for Efficient Atmospheric Water Harvesting

Abstract

Atmospheric water harvesting is a sustainable solution to global water shortage, which requires high efficiency, high durability, low cost, and environmentally friendly water collectors. In this paper, we report a novel water collector design based on a nature-inspired hybrid superhydrophilic/superhydrophobic aluminum surface. The surface is fabricated by combining laser and chemical treatments. We achieve a 163° contrast in contact angles between the superhydrophilic pattern and the superhydrophobic background. Such a unique superhydrophilic/superhydrophobic combination presents a self-pumped mechanism, providing the hybrid collector with highly efficient water harvesting performance. Based on simulations and experimental measurements, the water harvesting rate of the repeating units of the pattern was optimized, and the corresponding hybrid collector achieves a water harvesting rate of 0.85 kg m–2 h–1. Additionally, our hybrid collector also exhibits good stability, flexibility, as well as thermal conductivity and hence shows great potential for practical application

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 22/07/2023

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.