Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Model selection and forecasting of long-range dependent processes


Fractionally integrated autoregressive moving-average (ARFIMA) models have proved useful tools in the analysis of time series with long-range dependence. However, little is known about various practical issues regarding model selection and estimation methods, and the impact of selection and estimation methods on forecasts. By means of a large-scale simulation study, we compare three different estimation procedures and three automatic model-selection criteria on the basis of their impact on forecast accuracy. Our results endorse the use of both the frequency domain Whittle estimation procedure and the time-domain approximate MLE procedure of Haslett and Raftery in conjunction with the AIC and SIC selection criteria, but indicate that considerable care should be exercised when using ARFIMA models. In general, we find that simple ARMA models provide competitive forecasts. Only a large number of observations and a strongly persistent time series seem to justify the use of ARFIMA models for forecasting

Similar works

This paper was published in UTL Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.