Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hydration and ion pair formation in common aqueous La(III) salt solutions: a Raman scattering and DFT study


Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121–3.050 mol Lˉ¹) range at room temperature (23 °C). A very weak mode at 343 cmˉ¹ with a full width at half height at 49 cmˉ¹ in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol Lˉ¹) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La³⁺ nona-hydrate was also detected in a 1.2 mol Lˉ¹ La(CF₃SO₃)₃(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5–3.050 mol Lˉ¹. The chloro-complexes in LaCl₃(aq) are fairly weak and disappear with dilution. At a concentration <0.1 mol Lˉ¹ almost all complexes disappeared. In LaCl₃ solutions, with additional HCl, a series of chloro-complexes of the type [La(OH₂)₉₋nCln]⁺³⁻ⁿ (n = 1–3) were formed. The La(NO₃)₃(aq) spectra were compared with a spectrum of a 0.409 mol Lˉ¹ NaNO₃(aq) and it was concluded that in La(NO₃)₃(aq) over the concentration range from 0.121–1.844 mol Lˉ¹, nitrato-complexes, [La(OH₂)₉₋n-(NO₃)n]⁺³⁻ⁿ (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution <0.01 mol Lˉ¹. DFT geometry optimizations and frequency calculations are reported for a lanthanumnona-hydrate with a polarizable dielectric continuum in order to take the solvent into account. The bond distances and angles for the cluster geometry of [La(OH₂)₉]³⁺ with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La–O stretching mode at 328.2 cmˉ¹, is only slightly smaller than the experimental one

Similar works

Full text


HSSS - Hochschulschriftenserver der SLUB

Last time updated on 18/02/2023

This paper was published in HSSS - Hochschulschriftenserver der SLUB.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.