Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Insights into Shape Selectivity and Acidity Control in NiO-Loaded Mesoporous SBA-15 Nanoreactors for Catalytic Conversion of Cellulose to 5‑Hydroxymethylfurfural

Abstract

Facilitated isomerization of cellulose hydrolysis intermediate glucose without unexpected byproducts, which is the rate-determining step in the production of high-value-added biofuels, enables the efficient production of 5-hydroxymethylfurfural (5-HMF) from cellulose. In this work, considering the essential role of the acidity control and shape selectivity of a zeolite catalyst, a NiO-loaded mesoporous NiO/poly(vinyl pyrrolidone) (PVP)-phosphotungstic acid (HPA)@SBA-15 nanoreactor was prepared. This SBA-15 nanoreactor with a pore size of 5.47 nm reduced the concentration of byproducts formic acid (FA) and levulinic acid (LA) through shape selection for intermediates. Well-defined NiO nanoparticles (Ni-to-carrier mass ratio was 1:1) provided the NiO/PVP-HPA@SBA-15 nanoreactor a high Lewis acidity of 99.29 μmol g–1 for glucose catalytic isomerization, resulting in an increase in total reducing sugar (TRS) yield by 5 times. Such a nanoreactor remarkably improved the reaction efficiency of 5-HMF production from cellulose (a 5-HMF selectivity of 95.81%) in the 1-butyl-3-methylimidazolium chloride ([BMIM]Cl)/valerolactone (GVL) biphasic system

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/12/2022

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.