Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Design Trade-Offs Between the Coupled Coils’ Inductance and the Series-Series Compensation Capacitance for EV Wireless Charging Systems

Abstract

Nowadays, inductive power transfer (IPT) with magnetic resonance is the most used method for high-power wireless battery charging applications. Once the topology of the compensation network and the operating frequency are selected, there are infinite combinations of the circuit equivalent inductance and compensation capacitance values resonating at that frequency. Choosing an appropriate ratio between these passive devices is essential to meet the target output power while ensuring that the required DC input and output voltages are found within the permitted range limited by the power source and the battery load. This paper proposes design trade-offs for selecting the optimum ratio between the inductance and capacitance in IPT systems with series-series compensation applicable to any power level. First, the target mutual inductance must be computed. Based on that, the coupled coils are designed depending on the physical constraints. An example is provided considering a 3.7 kW wireless charging system for electric vehicles (EVs) where different coils’ combinations are analyzed through the finite element method. The most suitable design is implemented, achieving or the application a relatively high measured peak DC-to-DC efficiency of about 96.24% at 3.28kW while the coils are aligned with 11cm distance. The required power is delivered at different battery voltages and coils’ alignments by regulating the DC input voltage.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.DC systems, Energy conversion & Storag

Similar works

Full text

thumbnail-image

TU Delft Repository

redirect
Last time updated on 23/08/2022

This paper was published in TU Delft Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.