Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

On the magnetization of gamma-ray burst blast waves

Abstract

International audienceThe origin of magnetic fields that permeate the blast waves of gamma-ray bursts (GRBs) is a long-standing problem. The present paper argues that in four GRBs revealing extended emission at >100 MeV, with follow-up in the radio, optical and X-ray domains at later times, this magnetization can be described as the partial decay of the micro-turbulence that is generated in the shock precursor. Assuming that the bulk of the extended emission >100 MeV can be interpreted as synchrotron emission of shock-accelerated electrons, we model the multi-wavelength light curves of GRB 090902B, GRB 090323, GRB 090328 and GRB 110731A, using a simplified then a full synchrotron calculation with power-law-decaying micro-turbulence ɛB ≈ tαt (t denotes the time since injection through the shock, in the comoving blast frame). We find that these models point to a consistent value of the decay exponent -0.5 ≲ αt ≲ -0.4

Similar works

Full text

thumbnail-image

HAL-INSU

redirect
Last time updated on 19/05/2022

This paper was published in HAL-INSU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.