Deep learning and unsupervised machine learning for the quantification and interpretation of electrocardiographic signals

Abstract

Las señales electrocardiográficas, ya sea adquiridas en la piel del paciente (electrocardiogamas de superficie, ECG) o de forma invasiva mediante cateterismo (electrocardiogramas intracavitarios, iECG) ayudan a explorar la condición y función cardíacas del paciente, dada su capacidad para representar la actividad eléctrica del corazón. Sin embargo, la interpretación de las señales de ECG e iECG es una tarea difícil que requiere años de experiencia, con criterios diagnósticos complejos para personal clínico no especialista, que en muchos casos deben ser interpretados durante situaciones de gran estrés o carga de trabajo como en la unidad de cuidados intensivos, o durante procedimientos de ablación por radiofrecuencia (ARF) donde el cardiólogo tiene que interpretar cientos o miles de señales individuales. Desde el punto de vista computacional, el desarrollo de herramientas de alto rendimiento mediante técnicas de análisis basadas en datos adolece de la falta de bases de datos anotadas a gran escala y de la naturaleza de “caja negra” que están asociados con los algoritmos considerados estado del arte en la actualidad. Esta tesis trata sobre el entrenamiento de algoritmos de aprendizaje automático que ayuden al personal clínico en la interpretación automática de ECG e iECG. Esta tesis tiene cuatro contribuciones principales. En primer lugar, se ha desarrollado una herramienta de delineación del ECG para la predicción de los inicios y finales de las principales ondas cardíacas (ondas P, QRS y T) en registros compuestos de cualquier configuración de derivaciones. En segundo lugar, se ha desarrollado un algoritmo de generación de datos sintéticos que es capaz de paliar el impacto del reducido tamaño de las bases de datos existentes para el desarrollo de algoritmos de delineación. En tercer lugar, la metodología de análisis de datos de ECG se aplicó a datos similares, en registros electrocardiográficos intracavitarios, con el mismo objetivo de marcar inicios y finales de activaciones locales y de campo lejano para facilitar la localización de sitios de ablación adecuados en procedimientos de ARF. Para este propósito, el algoritmo de delineación del ECG de superficie desarrollado previamente fue empleado para preprocesar los datos y marcar la detección del complejo QRS. En cuarto y último lugar, el algoritmo de delineación de ECG de superficie fue empleado, junto con un algoritmo de reducción de dimensionalidad, Multiple Kernel Learning, para agregar la información del ECG de 12 derivaciones y lograr la identificación de marcadores que permitan la estratificación del riesgo de muerte súbita cardíaca en pacientes con cardiomiopatía hipertrófica.Electrocardiographic signals, either acquired on the patient’s skin (surface electrocardiogam, ECG) or invasively through catheterization (intracavitary electrocardiogram, iECG) offer a rich insight into the patient’s cardiac condition and function given their ability to represent the electrical activity of the heart. However, the interpretation of ECG and iECG signals is a complex task that requires years of experience, difficulting the correct diagnosis for non-specialists, during stress-related situations such as in the intensive care unit, or in radiofrequency ablation (RFA) procedures where the physician has to interpret hundreds or thousands of individual signals. From the computational point of view, the development of high-performing pipelines from data analysis suffer from lack of large-scale annotated databases and from the “black-box” nature of state-of-the-art analysis approaches. This thesis attempts at developing machine learning-based algorithms that aid physicians in the task of automatic ECG and iECG interpretation. The contributions of this thesis are fourfold. Firstly, an ECG delineation tool has been developed for the markup of the onsets and offsets of the main cardiac waves (P, QRS and T waves) in recordings comprising any configuration of leads. Secondly, a novel synthetic data augmentation algorithm has been developed for palliating the impact of small-scale datasets in the development of robust delineation algorithms. Thirdly, this methodology was applied to similar data, intracavitary electrocardiographic recordings, with the objective of marking the onsets and offsets of events for facilitating the localization of suitable ablation sites. For this purpose, the ECG delineation algorithm previously developed was employed to pre-process the data and mark the QRS detection fiducials. Finally, the ECG delineation approach was employed alongside a dimensionality reduction algorithm, Multiple Kernel Learning, for aggregating the information of 12-lead ECGs with the objective of developing a pipeline for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy.Programa de doctorat en Tecnologies de la Informació i les Comunicacion

Similar works

Full text

thumbnail-image

Tesis Doctorals en Xarxa

redirect
Last time updated on 28/02/2022

This paper was published in Tesis Doctorals en Xarxa.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.