Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.
research articleconference paper

On the Universality of the Logistic Loss Function

Abstract

© 2018 IEEE. A loss function measures the discrepancy between the true values (observations) and their estimated fits, for a given instance of data. A loss function is said to be proper (unbiased, Fisher consistent) if the fits are defined over a unit simplex, and the minimizer of the expected loss is the true underlying probability of the data. Typical examples are the zero-one loss, the quadratic loss and the Bernoulli log-likelihood loss (log-loss). In this work we show that for binary classification problems, the divergence associated with smooth, proper and convex loss functions is bounded from above by the Kullback-Leibler (KL) divergence, up to a multiplicative normalization constant. It implies that by minimizing the log-loss (associated with the KL divergence), we minimize an upper bound to any choice of loss functions from this set. This property justifies the broad use of log-loss in regression, decision trees, deep neural networks and many other applications. In addition, we show that the KL divergence bounds from above any separable Bregman divergence that is convex in its second argument (up to a multiplicative normalization constant). This result introduces a new set of divergence inequalities, similar to the well-known Pinsker inequality

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 19/12/2021

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-nc-sa/4.0/