Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Scale hierarchy in high-temperature QCD

Abstract

Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature TcT_c. At high temperature T≫TcT \gg T_c, the smallness of the running coupling gg induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales TT, gTg T and g2Tg^2 T. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few TcT_c appears surprising a posteriori.Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature TcT_c. At high temperature T≫TcT \gg T_c, the smallness of the running coupling gg induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales TT, gTg T and g2Tg^2 T. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few TcT_c appears surprising a posteriori

Similar works

Full text

thumbnail-image

CERN Document Server

redirect
Last time updated on 09/08/2016

This paper was published in CERN Document Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.