Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Joint segmentation of wind speed and direction using a hierarchical model

Abstract

International audienceThe problem of detecting changes in wind speed and direction is considered. Bayesian priors, with various degrees of certainty, are used to represent relationships between the two time series. Segmentation is then conducted using a hierarchical Bayesian model that accounts for correlations between the wind speed and direction. A Gibbs sampling strategy overcomes the computational complexity of the hierarchical model and is used to estimate the unknown parameters and hyperparameters. Extensions to other statistical models are also discussed. These models allow us to study other joint segmentation problems including segmentation of wave amplitude and direction. The performance of the proposed algorithms is illustrated with results obtained with synthetic and real data

Similar works

Full text

thumbnail-image

HAL Descartes

redirect
Last time updated on 14/04/2021

This paper was published in HAL Descartes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.