Studies On Monolithic Active Pixel Sensors and Detector Performance for the Inner Tracking System Upgrade of ALICE

Abstract

ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using Pb-Pb collisions at unprecedented energy densities. During the first three years of operation, it has demonstrated very good capabilities for measurements at high energy Pb-Pb collisions. But there are certain measurements like high precision measurements of rare probes over a wide range of momenta, which would require high statistics and are not satisfactory or even possible with the current experimental setup. These measurements would help to achieve the long term physics goals of ALICE and would go a long way forward in understanding and characterizing the Quark Gluon Plasma (QGP). To enhance its physics capabilities, ALICE has formulated an upgrade of its detectors, motivated by an upgrade of the LHC during the LHC Long Shutdown 2 (2018-2020). The LHC upgrade features which primarily motivated the ALICE upgrade programme are, in particular, Pb-Pb collisions with a high interaction rate of up to 50 kHz corresponding to an instantaneous luminosity, L = 6 × 1027cm−2s−1 and, the installation of a narrower beam pipe. Accordingly, ALICE would require detector upgrades to cope with the upgrade scenario. These upgrades should help to improve tracking and vertexing capabilities, radiation hardness and allow readout of all interactions to accumulate enough statistics for the upgrade physics programme. The objective is to accumulate 10 nb−1 of Pb–Pb collisions, recording about 1011 interactions. Within this upgrade strategy, the Inner Tracking System (ITS) upgrade forms an important cornerstone, providing improved vertexing and readout capabilities. The new ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity which would cater to the material budget, readout and radiation hardness requirements for the upgrade. The geometry is optimized for high efficiency, both in standalone tracking and ITS-TPC combined tracking. TowerJazz 0.18 μm technology is selected for designing the pixels for ITS upgrade. This technology provides attractive features like the option to implement a deep pwell allowing the implementation of a full CMOS process in the pixel. The ongoing research and development on these pixels investigates different design strategies and would converge towards the final design of the detector by the end of 2014. Several prototypes have been designed to investigate and validate the different design strategies and the different components of the pixel detector using this technology. The work presented in this thesis can be categorized in two parts. The first part concerns the results of characterization of some of the pixel prototype circuits developed for the ITS upgrade, in particular MIMOSA32, MIMOSA32Ter and Explorer-1. The second part discusses the detector performance studies of the upgraded ITS. MIMOSA32 and MIMOSA32Ter were one of the first prototypes designed with the TowerJazz technology in the upgrade programme. The motivation was to validate the technology. This thesis includes the results of tests and characterization of pixel structures of these prototypes and qualifies the technology in terms of charge collection and radiation tolerance and the usage of the deep p-well structure. This provides a starting point for future prototypes where the deep p-well could be implemented in a full CMOS process, thus allowing in-pixel sophisticated signal processing circuits. The Explorer prototypes are developed at CERN with the main motivation towards developing a detector with low power density, lower than the maximum permissible limits for the upgrade programme. This would provide a margin to reduce the material budget of the detection layers, improving the detector performance. The Explorer prototypes are designed to study the ratio of the collected charge to the input capacitance (Q/C), in particular, its dependence on the size of the collection diode and its distance to the adjacent p-well of the input transistors. The Explorer prototypes allows the application of a back-bias voltage which has an effect on the signal collection properties. In a pixel detector, improvement of the Q/C ratio enhances the signal amplitude at the collection node of the pixel circuit which is connected to the analog frontend. This would help in optimizing the analog frontend to improve the signal to noise ratio of the detector, which has a direct consequence in minimizing the power consumption of the detector. This thesis includes the test and characterization of Explorer-1 prototype circuits with different starting materials. The results show that Q/C improves with higher back bias voltage and increased spacing between the collection electrode and the adjacent p-well. With these results, the future prototypes of Explorer could concentrate on Optimizing the size of the input transistors to study its effects on the Random Telegraph Signal noise. In parallel, optimization of the signal processing circuits would also be carried out in other prototypes. The second part of the thesis studies the performance of a baseline configuration of the upgraded detector in terms of impact parameter resolution, momentum resolution and tracking efficiency both in standalone tracking mode and ITS-TPC combined tracking. The performance is compared with the current ITS to study the improvements in the upgraded ITS. The performance is affected by the radial position and material budget of the layers and the detector intrinsic resolution. The detector specifications in this regard are still evolving specially for the Outer Barrel (the outermost four layers). The studies show the effects of variation of the specifications in terms of material budget and intrinsic resolution on the detector performance. This would help to finalize the detector specifications for an optimized detector performance. The thesis also concludes that a reduction in the beam pipe radius (lower than the baseline upgrade scenario) would not affect detector performance but may facilitate the installation of the Inner Barrel. Redundancy studies show that the presence of a dead layer can degrade the detector performance significantly. This defines a key requirement of easy and rapid accessibility to the detector in the design of the upgraded ITS. The ITS upgrade timeline foresees the finalization of the final pixel architecture in late 2014. Mass production of the final circuit is planned for 2015. The construction of the detector modules, tests, assembling and pre-commissioning will be carried out throughout 2016-2017 followed by the installation of the detector in the ALICE cavern in 2018

Similar works

This paper was published in UniCA Eprints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.