Hidden information in ill-posed inverse problems

Abstract

It is well known that parameter updating of large-scale numerical reservoir flow models (a.k.a. ‘computer assisted history matching’) is an ill-posed inverse problem. Typically the number of uncertain parameters in a reservoir flow model is very large whereas the available information for estimating these parameters is limited. The classic solution to this problem is to regularize the unknowns, e.g. by penalizing deviations from a prior model. Attempts to estimate all uncertain parameters from production data without regularization typically lead to unrealistically high parameter values and therefore to updated parameter fields that have little or no geological realism. However, it has been suggested that the application of unregularized reservoir parameter estimation may still add value, because it, sometimes, gives an indication of the location of significant missing features in the model. We investigated under which conditions this perceived added value might occur. We conducted several twin experiments and applied unregularized parameter estimation to update uncertain parameters in a simple two-dimensional reservoir model that contained a major deficiency in the form of a missing high or low permeability feature. We found that in case of low-permeability barriers or high-permeability streaks it is indeed sometimes possible to localize the position of the model deficiency. To further analyze this behavior we conducted onedimensional experiments using a transfer function formalism to characterize the identifiability of the location and magnitude of model deficiencies (flow barriers).Geoscience and EngineeringCivil Engineering and Geoscience

Similar works

Full text

thumbnail-image

TU Delft Repository

redirect
Last time updated on 09/05/2016

This paper was published in TU Delft Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.