Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Street map analysis with excitable chemical medium

Abstract

© 2018 American Physical Society. Belousov-Zhabotinsky (BZ) thin layer solution is a fruitful substrate for designing unconventional computing devices. A range of logical circuits, wet electronic devices, and neuromorphic prototypes have been constructed. Information processing in BZ computing devices is based on interaction of oxidation (excitation) wave fronts. Dynamics of the wave fronts propagation is programed by geometrical constraints and interaction of colliding wave fronts is tuned by illumination. We apply the principles of BZ computing to explore a geometry of street networks. We use two-variable Oregonator equations, the most widely accepted and verified in laboratory experiments BZ models, to study propagation of excitation wave fronts for a range of excitability parameters, with gradual transition from excitable to subexcitable to nonexcitable. We demonstrate a pruning strategy adopted by the medium with decreasing excitability when wider and ballistically appropriate streets are selected. We explain mechanics of streets selection and pruning. The results of the paper will be used in future studies of studying dynamics of cities and characterizing geometry of street networks

Similar works

This paper was published in UWE Bristol Research Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.