Measurements of Few-Mode Fiber Photonic Lanterns in Emulated Atmospheric Conditions for a Low Earth Orbit Space to Ground Optical Communication Receiver Application
- Publication date
- 2020
- Publisher
Abstract
Photonic lanterns are being evaluated as a component of a scalable photon counting real-time optical ground receiver for space-to-ground photon-starved communication applications. The function of the lantern as a component of a receiver is to efficiently couple and deliver light from the atmospherically distorted focal spot formed behind a telescope to multiple small-core fiber-coupled single-element super-conducting nanowire detectors. This architecture solution is being compared to a multimode fiber coupled to a multi-element detector array. This paper presents a set of measurements that begins this comparison. This first set of measurements are a comparison of the throughput coupling loss at emulated atmospheric conditions for the case of a 60 cm diameter telescope receiving light from a low earth orbit satellite. The atmospheric conditions are numerically simulated at a range of turbulence levels using a beam propagation method and are physically emulated with a spatial light modulator. The results show that for the same number of output legs as the single-mode fiber lantern, the few mode fiber lantern increases the power throughput up to 3.92 dB at the worst emulated atmospheric conditions tested of D/r0=8.6. Furthermore, the coupling loss of the few mode fiber lantern approaches the capability of a 30 micron graded index multimode fiber chosen for coupling to a 16 element detector array