Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Two-Level Master-Slave RFID Networks Planning via Hybrid Multiobjective Artificial Bee Colony Optimizer


Radio frequency identification (RFID) networks planning (RNP) is a challenging task on how to deploy RFID readers under certain constraints. Existing RNP models are usually derived from the flat and centralized-processing framework identified by vertical integration within a set of objectives which couple different types of control variables. This paper proposes a two-level RNP model based on the hierarchical decoupling principle to reduce computational complexity, in which the cost efficient planning at the top levels is modeled with a set of discrete control variables (i.e., switch states of readers), and the quality of service objectives at the bottom level are modeled with a set of continuous control variables (i.e., physical coordinate and radiate power). The model of the objectives at the two levels is essentially a multi objective problem. In order to optimize this model, this paper proposes a specific multi objective artificial bee colony optimizer called H-MOABC, which is based on performance indicators with reinforcement learning and orthogonal Latin squares approach. The proposed algorithm proves to be competitive in dealing with two-objective and three-objective optimization problems in comparison with state-of-the-art algorithms. In the experiments, H-MOABC is employed to solve the two scalable real-world RNP instances in the hierarchical decoupling manner. Computational results shows that the proposed H-MOABC is very effective and efficient in RFID networks optimization

Similar works

This paper was published in Ulster University's Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.