A Complete Mass Spectrometry (MS)-Based Peptidomic Description of Gluten Peptides Generated During In Vitro Gastrointestinal Digestion of Durum Wheat: Implication for Celiac Disease


Resistance of gluten to gastrointestinal digestion is involved in immune-mediated adverse reactions to wheat, since several peptides produced by the incomplete digestion are able to trigger, in predisposed individuals, the immune response responsible, for instance, of celiac disease (CD) and other adverse reactions. Even if several peptides have been identified, an exhaustive description of the peptidome generated by wheat digestion is lacking. To this end, in the present work, durum wheat proteins were fractionated, digested, and then subjected to various proteomic techniques, including single stage and multiple stage mass spectrometry (MS) (SDS-PAGE, UPLC/ESI-MS, UPLC/ESI-MS/MS, and LTQ-Orbitrap). Based on SDS-PAGE, although proteins were severely degraded after in vitro gastrointestinal digestion, some differences were observed among protein profile of the different digests. Through untargeted UPLC techniques, 227 peptide sequences were identified, with only few sequences shared by the different digests. In particular, 9 gluten peptides involved in CD were identified. Based on target proteomic, the quantification of these peptides revealed significant (p ≤ 0.05) differences among the different extracts. Taken together, all the proteomic tools confirmed that gluten digestion is closely related to the matrix regardless of wheat genotype. [Figure not available: see fulltext.]

Similar works

Full text


Archivio istituzionale della Ricerca - Università degli Studi di Parma

Full text is not available
oai:air.unipr.it:11381/2863511Last time updated on 10/29/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

We use cookies to improve our website.

Learn more