We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

This is a short note on some properties of a family of Cayley digraphs. A digraph D is the pattern of a matrix M when D has an arc ij if and only if the ij-th entry of M is nonzero. Study the relationship between unitary matrices and their patterns is motivated by works in quantum chaology and quantum computation. In this note, I prove that if a Cayley digraph is a line digraph then it is the pattern of a unitary matrix. I prove that for any finite group with two generators there exists a set of generators such that the Cayley digraph with respect to such a set is a line digraph and hence the pattern of a unitary matrix. Investigating this subject might be useful in the perspective of design quantum algorithms for groups (e.g. for hidden subgroup problems, et simil.).This is a short note on some properties of a family of Cayley digraphs. A digraph D is the pattern of a matrix M when D has an arc ij if and only if the ij-th entry of M is nonzero. Study the relationship between unitary matrices and their patterns is motivated by works in quantum chaology and quantum computation. In this note, I prove that if a Cayley digraph is a line digraph then it is the pattern of a unitary matrix. I prove that for any finite group with two generators there exists a set of generators such that the Cayley digraph with respect to such a set is a line digraph and hence the pattern of a unitary matrix. Investigating this subject might be useful in the perspective of design quantum algorithms for groups (e.g. for hidden subgroup problems, et simil.)

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.